Skip to main content

Advertisement

Log in

Hybrid PET/MRI imaging in non-ischemic cardiovascular disease

  • Systematic Review
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

Background and aim

Hybrid Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) is a new multimodality technique with a promising future in diagnostic imaging, allowing the synchronous acquisition of MRI anatomical data and PET functional information. The present systematic review aims to update the latest available evidence on the role of PET/MRI in the management of non-ischemic cardiovascular diseases, such as inflammatory cardiomyopathies, infiltrative disorders, vasculitis, and cardiac tumors. Furthermore, some examples extrapolated from the case histories of our center have been reported.

Materials and methods

The literature search was conducted on PubMed, with particular attention to articles published in the last 5 years. The terms used were “PET/MRI” OR “PET/MR” AND “cardiovascular” AND “inflammation” NOT “ischemic”. All relevant full-text articles found were evaluated. We have then separated the information found into categories, starting from the division between vascular and cardiac pathologies, and a comprehensive narrative review of the literature was written.

Results

The research has produced 214 articles; 86 were eligible for the review. It has emerged that PET/MRI can facilitate the distinction between active and chronic disease in patients with endocarditis, myocarditis, vasculitis and aortitis. In sarcoidosis, it allows to detect fibrous areas due to the presence of granulomas and in amyloidosis, it identifies areas of accumulation of amyloid. In cardiovascular masses, PET/MRI helps to distinguish benign from malignant masses due to increased metabolism in malignant tumors.

Conclusion

The current review confirms the utility of PET/MRI in providing a comprehensive assessment of non-ischemic cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data to support the findings of this study are not publicly available, however, data is available upon reasonable request from the corresponding author. Data were obtained through a literature review, based on the given references.

References

  1. Chen Y, An H (2017) Attenuation correction of PET/MR Imaging. Magn Reson Imaging Clin N Am 25:245–255. https://doi.org/10.1016/j.mric.2016.12.001

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nensa F, Beiderwellen K, Heusch P, Wetter A (2014) Clinical applications of PET/MRI: current status and future perspectives. Diagn Interv Radiol 20:438–447. https://doi.org/10.5152/dir.2014.14008

    Article  PubMed  PubMed Central  Google Scholar 

  3. Abgral R, Dweck MR, Trivieri MG et al (2017) Clinical utility of combined FDG-PET/MR to assess myocardial disease. JACC Cardiovasc Imaging 10:594–597. https://doi.org/10.1016/j.jcmg.2016.02.029

    Article  PubMed  Google Scholar 

  4. Kirienko M, Erba PA, Chiti A, Sollini M (2023) Hybrid PET/MRI in Infection and inflammation: an update about the latest available literature evidence. Semin Nucl Med 53:107–124. https://doi.org/10.1053/j.semnuclmed.2022.10.005

    Article  PubMed  Google Scholar 

  5. Cardoso R, Leucker TM (2020) Applications of PET-MR imaging in cardiovascular disorders. PET Clin 15:509–520. https://doi.org/10.1016/j.cpet.2020.06.007

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nensa F, Schlosser T (2014) Cardiovascular hybrid imaging using PET/MRI. Rofo 186:1094–1101. https://doi.org/10.1055/s-0034-1385009

    Article  PubMed  Google Scholar 

  7. Rischpler C, Woodard PK (2019) PET/MR imaging in cardiovascular imaging. PET Clin 14:233–244. https://doi.org/10.1016/j.cpet.2018.12.005

    Article  PubMed  Google Scholar 

  8. Catana C (2020) Attenuation correction for human PET/MRI studies. Phys Med Biol 65:23TR02. https://doi.org/10.1088/1361-6560/abb0f8

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lau JMC, Laforest R, Sotoudeh H et al (2017) Evaluation of attenuation correction in cardiac PET using PET/MR. J Nucl Cardiol 24:839–846. https://doi.org/10.1007/s12350-015-0197-1

    Article  PubMed  Google Scholar 

  10. Hofmann M, Bezrukov I, Mantlik F et al (2011) MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation- and atlas-based methods. J Nucl Med 52:1392–1399. https://doi.org/10.2967/jnumed.110.078949

    Article  PubMed  Google Scholar 

  11. Akbarzadeh A, Ay MR, Ahmadian A et al (2013) MRI-guided attenuation correction in whole-body PET/MR: assessment of the effect of bone attenuation. Ann Nucl Med 27:152–162. https://doi.org/10.1007/s12149-012-0667-3

    Article  CAS  PubMed  Google Scholar 

  12. Küstner T, Schwartz M, Martirosian P et al (2017) MR-based respiratory and cardiac motion correction for PET imaging. Med Image Anal 42:129–144. https://doi.org/10.1016/j.media.2017.08.002

    Article  PubMed  Google Scholar 

  13. Guo R, Petibon Y, Ma Y et al (2018) MR-based motion correction for cardiac PET parametric imaging: a simulation study. EJNMMI Phys 5:3. https://doi.org/10.1186/s40658-017-0200-9

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yang E, Suzuki M, Nazarian S, Halperin HR (2022) Magnetic resonance imaging safety in patients with cardiac implantable electronic devices. Trends Cardiovasc Med 32:440–447. https://doi.org/10.1016/j.tcm.2021.08.001

    Article  PubMed  Google Scholar 

  15. Ching CK, Chakraborty RN, Kler TS et al (2017) Clinical safety and performance of a MRI conditional pacing system in patients undergoing cardiac MRI. Pacing Clin Electrophysiol 40:1389–1395. https://doi.org/10.1111/pace.13232

    Article  PubMed  Google Scholar 

  16. Blissett S, Chetrit M, Kovacina B et al (2018) Performing cardiac magnetic resonance imaging in patients with cardiac implantable electronic devices: a contemporary review. Can J Cardiol 34:1682–1686. https://doi.org/10.1016/j.cjca.2018.09.009

    Article  PubMed  Google Scholar 

  17. Amsallem M, Saito T, Tada Y et al (2016) Magnetic resonance imaging and positron emission tomography approaches to imaging vascular and cardiac inflammation. Circ J 80:1269–1277. https://doi.org/10.1253/circj.CJ-16-0224

    Article  PubMed  Google Scholar 

  18. Goldar G, Garraud C, Sifuentes AA et al (2022) Autoimmune pericarditis: multimodality imaging. Curr Cardiol Rep 24:1633–1645. https://doi.org/10.1007/s11886-022-01785-3

    Article  PubMed  Google Scholar 

  19. Ferreira VM, Schulz-Menger J, Holmvang G et al (2018) Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations. J Am Coll Cardiol 72:3158–3176. https://doi.org/10.1016/j.jacc.2018.09.072

    Article  PubMed  Google Scholar 

  20. Gannon MP, Schaub E, Grines CL, Saba SG (2019) State of the art: evaluation and prognostication of myocarditis using cardiac MRI. J Magn Reson Imaging 49:e122–e131. https://doi.org/10.1002/jmri.26611

    Article  PubMed  Google Scholar 

  21. Greulich S, Ferreira VM, Dall’Armellina E, Mahrholdt H (2015) Myocardial inflammation-are we there yet? Curr Cardiovasc Imaging Rep 8:6. https://doi.org/10.1007/s12410-015-9320-6

    Article  PubMed  PubMed Central  Google Scholar 

  22. Boursier C, Chevalier E, Varlot J et al (2022) Detection of acute myocarditis by ECG-triggered PET imaging of somatostatin receptors compared to cardiac magnetic resonance: preliminary results. J Nucl Cardiol. https://doi.org/10.1007/s12350-022-03090-6

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nensa F, Kloth J, Tezgah E et al (2018) Feasibility of FDG-PET in myocarditis: comparison to CMR using integrated PET/MRI. J Nucl Cardiol 25:785–794. https://doi.org/10.1007/s12350-016-0616-y

    Article  PubMed  Google Scholar 

  24. Hanneman K, Kadoch M, Guo HH et al (2017) Initial experience with simultaneous 18F-FDG PET/MRI in the evaluation of cardiac sarcoidosis and myocarditis. Clin Nucl Med 42:e328–e334. https://doi.org/10.1097/RLU.0000000000001669

    Article  PubMed  Google Scholar 

  25. Lee C-H, Kong E-J (2022) FDG PET/MRI of acute myocarditis after mRNA COVID-19 vaccination. Clin Nucl Med 47:e421–e422. https://doi.org/10.1097/RLU.0000000000004123

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hanneman K, Houbois C, Schoffel A et al (2022) Combined cardiac fluorodeoxyglucose-positron emission tomography/magnetic resonance imaging assessment of myocardial injury in patients who recently recovered from COVID-19. JAMA Cardiol 7:298–308. https://doi.org/10.1001/jamacardio.2021.5505

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kiuchi K, Fukuzawa K, Nogami M et al (2021) Visualization of intensive atrial inflammation and fibrosis after cryoballoon ablation: PET/MRI and LGE-MRI analysis. J Arrhythmia 37:52–59. https://doi.org/10.1002/joa3.12454

    Article  Google Scholar 

  28. Kiuchi K, Fukuzawa K, Nogami M et al (2019) Visualization of Inflammation after cryoballoon ablation in atrial fibrillation patients—protocol for proof-of-concept feasibility trial. Circ Rep 1:149–152. https://doi.org/10.1253/circrep.CR-19-0003

    Article  PubMed Central  Google Scholar 

  29. Habib G, Lancellotti P, Antunes MJ et al (2015) 2015 ESC guidelines for the management of infective endocarditis: the task force for the management of infective endocarditis of the European society of cardiology (ESC) endorsed by: European association for cardio-thoracic surgery (EACTS), the European association of nuclear medicine (EANM). Eur Heart J 36:3075–3128. https://doi.org/10.1093/eurheartj/ehv319

    Article  PubMed  Google Scholar 

  30. Vincent LL, Otto CM (2018) Infective endocarditis: update on epidemiology, outcomes, and management. Curr Cardiol Rep 20:86. https://doi.org/10.1007/s11886-018-1043-2

    Article  PubMed  Google Scholar 

  31. Murphy DJ, Din M, Hage FG, Reyes E (2019) Guidelines in review: Comparison of ESC and AHA guidance for the diagnosis and management of infective endocarditis in adults. J Nucl Cardiol 26:303–308. https://doi.org/10.1007/s12350-018-1333-5

    Article  PubMed  Google Scholar 

  32. Tarkin JM, Ćorović A, Wall C et al (2020) Positron emission tomography imaging in cardiovascular disease. Heart 106:1712–1718. https://doi.org/10.1136/heartjnl-2019-315183

    Article  CAS  PubMed  Google Scholar 

  33. San S, Ravis E, Tessonier L et al (2019) Prognostic value of 18F-fluorodeoxyglucose positron emission tomography/computed tomography in infective endocarditis. J Am Coll Cardiol 74:1031–1040. https://doi.org/10.1016/j.jacc.2019.06.050

    Article  CAS  PubMed  Google Scholar 

  34. Horgan SJ, Mediratta A, Gillam LD (2020) Cardiovascular imaging in infective endocarditis a multimodality approach. Circulation 13:e008956. https://doi.org/10.1161/CIRCIMAGING.120.008956

    Article  PubMed  Google Scholar 

  35. Agrawal T, Saleh Y, Sukkari MH et al (2022) Diagnosis of cardiac sarcoidosis: a primer for non-imagers. Heart Fail Rev 27:1223–1233. https://doi.org/10.1007/s10741-021-10126-5

    Article  PubMed  Google Scholar 

  36. Ribeiro Neto ML, Jellis CL, Joyce E et al (2019) Update in cardiac sarcoidosis. Ann Am Thorac Soc 16:1341–1350. https://doi.org/10.1513/AnnalsATS.201902-119CME

    Article  PubMed  Google Scholar 

  37. Tan JL, Fong HK, Birati EY, Han Y (2019) Cardiac sarcoidosis. Am J Cardiol 123:513–522. https://doi.org/10.1016/j.amjcard.2018.10.021

    Article  PubMed  Google Scholar 

  38. Radunski UK, Lund GK, Stehning C et al (2014) CMR in patients with severe myocarditis: diagnostic value of quantitative tissue markers including extracellular volume imaging. JACC Cardiovasc Imaging 7:667–675. https://doi.org/10.1016/j.jcmg.2014.02.005

    Article  PubMed  Google Scholar 

  39. Kumita S, Yoshinaga K, Miyagawa M et al (2019) Recommendations for 18F-fluorodeoxyglucose positron emission tomography imaging for diagnosis of cardiac sarcoidosis-2018 update: Japanese society of nuclear cardiology recommendations. J Nucl Cardiol 26:1414–1433. https://doi.org/10.1007/s12350-019-01755-3

    Article  PubMed  Google Scholar 

  40. Hulten E, Aslam S, Osborne M et al (2016) Cardiac sarcoidosis-state of the art review. Cardiovasc Diagn Ther 6:50–63. https://doi.org/10.3978/j.issn.2223-3652.2015.12.13

    Article  PubMed  PubMed Central  Google Scholar 

  41. Osborne MT, Hulten EA, Singh A et al (2014) Reduction in 18F-fluorodeoxyglucose uptake on serial cardiac positron emission tomography is associated with improved left ventricular ejection fraction in patients with cardiac sarcoidosis. J Nucl Cardiol 21:166–174. https://doi.org/10.1007/s12350-013-9828-6

    Article  PubMed  Google Scholar 

  42. Dweck MR, Abgral R, Trivieri MG et al (2018) Hybrid magnetic resonance imaging and positron emission tomography with fluorodeoxyglucose to diagnose active cardiac sarcoidosis. JACC Cardiovasc Imaging 11:94–107. https://doi.org/10.1016/j.jcmg.2017.02.021

    Article  PubMed  Google Scholar 

  43. Vita T, Okada DR, Veillet-Chowdhury M et al (2018) Complementary value of cardiac magnetic resonance imaging and positron emission tomography/computed tomography in the assessment of cardiac sarcoidosis. Circ Cardiovasc Imaging 11:e007030. https://doi.org/10.1161/CIRCIMAGING.117.007030

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wicks EC, Menezes LJ, Barnes A et al (2018) Diagnostic accuracy and prognostic value of simultaneous hybrid 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging in cardiac sarcoidosis. Eur Heart J Cardiovasc Imaging 19:757–767. https://doi.org/10.1093/ehjci/jex340

    Article  PubMed  Google Scholar 

  45. Okune M, Yasuda M, Soejima N et al (2022) Diagnostic utility of fusion 18F-fluorodeoxyglucose positron emission tomography/cardiac magnetic resonance imaging in cardiac sarcoidosis. J Nucl Cardiol 29:753–764. https://doi.org/10.1007/s12350-020-02359-y

    Article  PubMed  Google Scholar 

  46. Greulich S, Gatidis S, Gräni C et al (2022) Hybrid cardiac magnetic resonance/fluorodeoxyglucose positron emission tomography to differentiate active from chronic cardiac sarcoidosis. JACC Cardiovasc Imaging 15:445–456. https://doi.org/10.1016/j.jcmg.2021.08.018

    Article  PubMed  Google Scholar 

  47. Garcia-Pavia P, Rapezzi C, Adler Y et al (2021) Diagnosis and treatment of cardiac amyloidosis: a position statement of the ESC working group on myocardial and pericardial diseases. Eur Heart J 42:1554–1568. https://doi.org/10.1093/eurheartj/ehab072

    Article  PubMed  PubMed Central  Google Scholar 

  48. de Marneffe N, Dulgheru R, Ancion A et al (2022) Cardiac amyloidosis: a review of the literature. Acta Cardiol 77:683–692. https://doi.org/10.1080/00015385.2021.1992990

    Article  CAS  PubMed  Google Scholar 

  49. Dorbala S, Ando Y, Bokhari S et al (2021) ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: part 1 of 2-Evidence Base and Standardized Methods of Imaging. Circ Cardiovasc Imaging 14:e000029. https://doi.org/10.1161/HCI.0000000000000029

    Article  PubMed  Google Scholar 

  50. Lee S-P, Lee ES, Choi H et al (2015) 11C-Pittsburgh B PET imaging in cardiac amyloidosis. JACC Cardiovasc Imaging 8:50–59. https://doi.org/10.1016/j.jcmg.2014.09.018

    Article  PubMed  Google Scholar 

  51. Dorbala S, Vangala D, Semer J et al (2014) Imaging cardiac amyloidosis: a pilot study using 18F-florbetapir positron emission tomography. Eur J Nucl Med Mol Imaging 41:1652–1662. https://doi.org/10.1007/s00259-014-2787-6

    Article  CAS  PubMed  Google Scholar 

  52. Gillmore JD, Maurer MS, Falk RH et al (2016) Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation 133:2404–2412. https://doi.org/10.1161/CIRCULATIONAHA.116.021612

    Article  CAS  PubMed  Google Scholar 

  53. Trivieri MG, Dweck MR, Abgral R et al (2016) 18F-sodium fluoride PET/MR for the assessment of cardiac amyloidosis. J Am Coll Cardiol 68:2712–2714. https://doi.org/10.1016/j.jacc.2016.09.953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Betrains A, Blockmans D (2021) Diagnostic approaches for large vessel vasculitides. Open Access Rheumatol 13:153–165. https://doi.org/10.2147/OARRR.S282605

    Article  PubMed  PubMed Central  Google Scholar 

  55. Keser G, Aksu K (2019) Diagnosis and differential diagnosis of large-vessel vasculitides. Rheumatol Int 39:169–185. https://doi.org/10.1007/s00296-018-4157-3

    Article  PubMed  Google Scholar 

  56. Einspieler I, Henninger M, Mergen V et al (2020) 18F-FDG PET/MRI compared with clinical and serological markers for monitoring disease activity in patients with aortitis and chronic periaortitis. Clin Exp Rheumatol 38(Suppl 124):99–106

    PubMed  Google Scholar 

  57. Weinrich JM, Lenz A, Adam G et al (2020) Radiologic imaging in large and medium vessel vasculitis. Radiol Clin North Am 58:765–779. https://doi.org/10.1016/j.rcl.2020.02.001

    Article  PubMed  Google Scholar 

  58. Dejaco C, Ramiro S, Duftner C et al (2018) EULAR recommendations for the use of imaging in large vessel vasculitis in clinical practice. Ann Rheum Dis 77:636–643. https://doi.org/10.1136/annrheumdis-2017-212649

    Article  PubMed  Google Scholar 

  59. Ponte C, Martins-Martinho J, Luqmani RA (2020) Diagnosis of giant cell arteritis. Rheumatology (Oxford) 59:iii5–iii16. https://doi.org/10.1093/rheumatology/kez553

    Article  PubMed  Google Scholar 

  60. Casali M, Lauri C, Altini C et al (2021) State of the art of 18F-FDG PET/CT application in inflammation and infection: a guide for image acquisition and interpretation. Clin Transl Imaging 9:299–339. https://doi.org/10.1007/s40336-021-00445-w

    Article  PubMed  PubMed Central  Google Scholar 

  61. Gholamrezanezhad A, Basques K, Batouli A et al (2018) Clinical nononcologic applications of PET/CT and PET/MRI in musculoskeletal, orthopedic, and rheumatologic imaging. AJR Am J Roentgenol 210:W245–W263. https://doi.org/10.2214/AJR.17.18523

    Article  PubMed  PubMed Central  Google Scholar 

  62. Danda D, Manikuppam P, Tian X, Harigai M (2022) Advances in Takayasu arteritis: an Asia Pacific perspective. Front Med (Lausanne) 9:952972. https://doi.org/10.3389/fmed.2022.952972

    Article  PubMed  PubMed Central  Google Scholar 

  63. Cerne JW, Liu S, Umair M et al (2022) Combined modality PET/MR for the detection of severe large vessel vasculitis. Eur J Hybrid Imaging 6:16. https://doi.org/10.1186/s41824-022-00136-3

    Article  PubMed  PubMed Central  Google Scholar 

  64. Schäfer VS, Jin L, Schmidt WA (2020) Imaging for diagnosis, monitoring, and outcome prediction of large vessel vasculitides. Curr Rheumatol Rep 22:76. https://doi.org/10.1007/s11926-020-00955-y

    Article  PubMed  PubMed Central  Google Scholar 

  65. Laurent C, Ricard L, Fain O et al (2019) PET/MRI in large-vessel vasculitis: clinical value for diagnosis and assessment of disease activity. Sci Rep 9:12388. https://doi.org/10.1038/s41598-019-48709-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Clemente G, Pereira RMR, Aikawa N et al (2022) Is positron emission tomography/magnetic resonance imaging a reliable tool for detecting vascular activity in treated childhood-onset Takayasu’s arteritis? A multicentre study. Rheumatology (Oxford) 61:554–562. https://doi.org/10.1093/rheumatology/keab255

    Article  CAS  PubMed  Google Scholar 

  67. Gandhi R, Bell M, Bailey M, Tsoumpas C (2021) Prospect of positron emission tomography for abdominal aortic aneurysm risk stratification. J Nucl Cardiol 28:2272–2282. https://doi.org/10.1007/s12350-021-02616-8

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kuzniar M, Tegler G, Wanhainen A et al (2020) Feasibility of assessing inflammation in asymptomatic abdominal aortic aneurysms with integrated 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging. Eur J Vasc Endovasc Surg 59:464–471. https://doi.org/10.1016/j.ejvs.2019.04.004

    Article  PubMed  Google Scholar 

  69. Syed MBJ, Fletcher AJ, Dweck MR et al (2019) Imaging aortic wall inflammation. Trends Cardiovasc Med 29:440–448. https://doi.org/10.1016/j.tcm.2018.12.003

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hoffmann U, Globits S, Schima W et al (2003) Usefulness of magnetic resonance imaging of cardiac and paracardiac masses. Am J Cardiol 92:890–895. https://doi.org/10.1016/s0002-9149(03)00911-1

    Article  PubMed  Google Scholar 

  71. Bussani R, Castrichini M, Restivo L et al (2020) Cardiac tumors: diagnosis, prognosis, and treatment. Curr Cardiol Rep 22:169. https://doi.org/10.1007/s11886-020-01420-z

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lichtenberger JP, Dulberger AR, Gonzales PE et al (2018) MR imaging of cardiac masses. Top Magn Reson Imaging 27:103–111. https://doi.org/10.1097/RMR.0000000000000166

    Article  PubMed  Google Scholar 

  73. Martineau P, Dilsizian V, Pelletier-Galarneau M (2021) Incremental value of FDG-PET in the evaluation of cardiac masses. Curr Cardiol Rep 23:78. https://doi.org/10.1007/s11886-021-01509-z

    Article  PubMed  Google Scholar 

  74. Tyebally S, Chen D, Bhattacharyya S et al (2020) Cardiac tumors. JACC 2:293–311. https://doi.org/10.1016/j.jaccao.2020.05.009

    Article  PubMed  PubMed Central  Google Scholar 

  75. Nensa F, Tezgah E, Poeppel TD et al (2015) Integrated 18F-FDG PET/MR imaging in the assessment of cardiac masses: a pilot study. J Nucl Med 56:255–260. https://doi.org/10.2967/jnumed.114.147744

    Article  CAS  PubMed  Google Scholar 

  76. Yaddanapudi K, Brunken R, Tan CD et al (2016) PET-MR imaging in evaluation of cardiac and paracardiac masses with histopathologic correlation. JACC Cardiovasc Imaging 9:82–85. https://doi.org/10.1016/j.jcmg.2015.04.028

    Article  PubMed  Google Scholar 

  77. Nappi C, Ponsiglione A, Pisani A et al (2021) Role of serial cardiac 18F-FDG PET-MRI in Anderson-Fabry disease: a pilot study. Insights Imaging 12:124. https://doi.org/10.1186/s13244-021-01067-6

    Article  PubMed  PubMed Central  Google Scholar 

  78. Imbriaco M, Nappi C, Ponsiglione A et al (2019) Hybrid positron emission tomography-magnetic resonance imaging for assessing different stages of cardiac impairment in patients with Anderson-Fabry disease: AFFINITY study group. Eur Heart J Cardiovasc Imaging 20:1004–1011. https://doi.org/10.1093/ehjci/jez039

    Article  PubMed  Google Scholar 

  79. Ghotra AS, Thompson K, Lopez-Mattei J et al (2019) Cardiovascular manifestations of Erdheim-Chester disease. Echocardiography 36:229–236. https://doi.org/10.1111/echo.14231

    Article  PubMed  Google Scholar 

  80. Wong KK, Raffel DM, Koeppe RA et al (2012) Frey KA, Bohnen NI, Gilman S. Pattern of cardiac sympathetic denervation in idiopathic Parkinson disease studied with 11C hydroxyephedrine PET. Radiology 265:240–247. https://doi.org/10.1148/radiol.12112723

    Article  PubMed  PubMed Central  Google Scholar 

  81. Chen D, Tang M, Lv S et al (2022) Prognostic usefulness of clinical features and pretreatment 18F-FDG PET/CT metabolic parameters in patients with angiosarcoma. Quant Imaging Med Surg 12:2792–2804. https://doi.org/10.21037/qims-21-563

    Article  PubMed  PubMed Central  Google Scholar 

  82. Barrio P, López-Melgar B, Fidalgo A et al (2021) Additional value of hybrid PET/MR imaging versus MR or PET performed separately to assess cardiovascular disease. Rev Esp Cardiol (Engl Ed) 74:303–311. https://doi.org/10.1016/j.rec.2020.06.034

    Article  PubMed  Google Scholar 

  83. Mrsic Z, Hulten EA (2020) PET/MR imaging of inflammatory cardiomyopathy as a two for one deal: great value or too good to be true? J Nucl Cardiol 27:2130–2134. https://doi.org/10.1007/s12350-019-01638-7

    Article  PubMed  Google Scholar 

  84. Padoan R, Crimì F, Felicetti M et al (2022) Fully integrated [18F]FDG PET/MR in large vessel vasculitis. Q J Nucl Med Mol Imaging 66:272–279. https://doi.org/10.23736/S1824-4785.19.03184-4

    Article  PubMed  Google Scholar 

  85. Evans NR, Tarkin JM, Le EP et al (2020) Integrated cardiovascular assessment of atherosclerosis using PET/MRI. Br J Radiol 93:20190921. https://doi.org/10.1259/bjr.20190921

    Article  PubMed  PubMed Central  Google Scholar 

  86. Farzaneh-Far A, Kwong RY (2017) Cardiovascular PET/MR: we need evidence, not hype. J Nucl Cardiol 24:1032–1035. https://doi.org/10.1007/s12350-016-0715-9

    Article  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

GA, MF: literature search and review, content planning and manuscript writing. All the authors: reviewing and editing.

Corresponding author

Correspondence to Marco Fogante.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interests associated with this study.

Ethical approval

The paper does not contain results of studies, with human or animal subject, performed by any of the authors. The anonymized images included in this review have been used only to provide an example of the covered topics. All patients who undergo examinations in our center sign an informed consent to the use of their anonymized data (including diagnostic images) for research purposes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argalia, G., Fogante, M., Schicchi, N. et al. Hybrid PET/MRI imaging in non-ischemic cardiovascular disease. Clin Transl Imaging 12, 69–80 (2024). https://doi.org/10.1007/s40336-023-00586-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-023-00586-0

Keywords

Navigation