Skip to main content

Advertisement

Log in

FDG–PET in patients with autoimmune encephalitis: a review of findings and new perspectives

  • Expert Review
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

A Correction to this article was published on 28 August 2023

This article has been updated

Abstract

Purpose

The present review aims to discuss the role of the brain 18F-FDG–PET and 18F-FDG–PET/CT (FDG–PET) in diagnosis and follow-up of the autoimmune encephalitis (AE) patients, highlighting the main findings and the new perspectives on use of these methods in the study of the disease.

Methods

The literature search was performed in the following databases: PubMed/MEDLINE, Scopus, Web of Science, Embase, and Google Scholar, according to the PRISMA statement. The main terms of search were: “autoimmune encephalitis” AND “18F-FDG–PET OR 18F-FDG–PET/CT”, or the combination between the term “18F-FDG–PET” OR “18F-FDG–PET/CT” AND the antibodies receptors abbreviations (e.g., “NMDA”, “VGKC”, etc.). The methodological quality of the publications was assessed according to the QUADAS-2 criteria.

Results

The search of the articles found 56 main articles. These articles encompassed 1,462 patients with AE positive antibodies, from which 808 had brain FDG–PET images with 714 (88.67%) showing alterations. Furthermore, some AE antibodies have specific metabolic signatures, detected in the images, which are discussed in the text. Moreover, patients at different stages of the disease may present different brain metabolic patterns. The areas of more common hypermetabolism were basal ganglia, hippocampus, amygdala, and cerebellum. The areas of more common hypometabolism were the visual cortex and a diffuse cortical metabolism.

Conclusions

This extensive literature review shows the high sensitivity of FDG–PET and FDG–PET/CT in patients with AE. FDG–PET detects findings of hyper and hypometabolism which are suggestive of AE. Besides, AE caused by the different antibodies may present specific alterations which may be suggestive of each one. However, more prospective studies are necessary for these images become a standard diagnostic method of AE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

Change history

References

  1. Oppenheim H (1888) Über Hirnsymptome bei Carcinomatose ohne nachweisbare Veränderungen im Gehirn. Charité-Annalen (Berlin) 13:335–344

    Google Scholar 

  2. Brierley JB, Corsellis JAN, Hierons R, Nevin S (1960) subacute encephalitis of later adult life mainly affecting the limbic areas. Brain 83(3):357–368

    Article  Google Scholar 

  3. Corsellis JAN, Goldberg GJ, Norton AR (1968) “Limbic encephalitis” and its association with carcinoma. Brain 91(3):481–496

    Article  CAS  PubMed  Google Scholar 

  4. Machado S, Pinto A, Irani S (2012) What should you know about limbic encephalitis? Arq Neuropsiquiatr 70(10):817–822

    Article  PubMed  Google Scholar 

  5. Russel D (1961) Encephalomyelitis and carcinomatous neuropathy. In: van Bogaert LRJ, Hozay J, Lowenthal, (eds) The encephalitidies. Elsevier, Amsterdam

    Google Scholar 

  6. Wilkinson P (1964) Serological findings in carcinomatous neuromyophathy. Lancet London 1:7346

    Google Scholar 

  7. Trotter J, Hendin B, Osterland C (1976) Cerebellar degeneration with hodgkin disease an immunological study. Archives Neurol. 33(9):660

    Article  CAS  Google Scholar 

  8. Graus F, Cordon-Cardo C, Posner J (1985) Neuronal antinuclear antibody in sensory neuronopathy from lung cancer. Neurology 35(4):22

    Article  Google Scholar 

  9. Patel A, Meng Y, Najjar A, Lado F, Najjar S (2022) Autoimmune encephalitis: a Physician’s guide to the clinical spectrum diagnosis and management. Brain Sci 12(9):1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Graus F, Titulaer M, Balu R, Benseler S, Bien C, Cellucci T et al (2016) A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 15(4):391–404

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dalmau J, Tüzün E, Wu H, Masjuan J, Rossi J, Voloschin A et al (2007) Paraneoplastic anti-N-Methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Anna Neurol. 61(1):25

    Article  CAS  Google Scholar 

  12. Hughes E, Peng X, Gleichman A, Lai M, Zhou L, Tsou R et al (2010) Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis. J Neurosci off J Soci Neurosci. 30(17):5866

    Article  CAS  Google Scholar 

  13. Lancaster E, Lai M, Peng X, Hughes E, Constantinescu R, Raizer J et al (2010) Antibodies to the GABA(B) receptor in limbic encephalitis with seizures: case series and characterisation of the antigen. Lancet Neurol 9(1):67

    Article  CAS  PubMed  Google Scholar 

  14. Irani S, Michell A, Lang B, Pettingill P, Waters P, Johnson M et al (2011) Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann Neurol 69(5):892–900

    Article  PubMed  Google Scholar 

  15. Lai M, Huijbers M, Lancaster E, Graus F, Bataller L, Balice-Gordon R et al (2010) Investigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: a case series. Lancet Neurol 9(8):776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vincent A, Buckley C, Schott J, Baker I, Dewar B, Detert N et al (2004) Potassium channel antibody-associated encephalopathy: a potentially immunotherapy-responsive form of limbic encephalitis. J Neurol 127(3):33

    Google Scholar 

  17. Irani S, Pettingill P, Kleopa K, Schiza N, Waters P, Mazia C et al (2012) Morvan syndrome: clinical and serological observations in 29 Cases. Anna Neurol. 72(2):214

    Google Scholar 

  18. Liguori R, Vincent A, Clover L, Avoni P, Plazzi G, Cortelli P et al (2001) Morvan’s syndrome: peripheral and central nervous system and cardiac involvement with antibodies to voltage-gated potassium channels. Brain J Neurol. 124(12):2417

    Article  CAS  Google Scholar 

  19. Lai M, Hughes E, Peng X, Zhou L, Gleichman A, Shu H et al (2009) AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location. Annals Neurol. 65(4):424

    Article  CAS  Google Scholar 

  20. Dale R, Merheb V, Pillai S, Wang D, Cantrill L, Murphy T et al (2012) Antibodies to surface dopamine-2 receptor in autoimmune movement and psychiatric disorders. Brain J Neurol. 135(11):3453

    Article  Google Scholar 

  21. Boronat A, Gelfand J, Gresa-Arribas N, Jeong H, Walsh M, Roberts K et al (2013) Encephalitis and antibodies to dipeptidyl-Peptidase-Like protein-6, a Subunit of Kv42 potassium channels. Annals Neurol. 73(1):120–128

    Article  CAS  Google Scholar 

  22. Tobin W, Lennon V, Komorowski L, Probst C, Clardy S, Aksamit A et al (2014) DPPX potassium channel antibody: frequency, clinical accompaniments, and outcomes in 20 patients. Neurology 83(20):1797–1803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Balint B, Jarius S, Nagel S, Haberkorn U, Probst C, Blöcker I et al (2014) progressive encephalomyelitis with rigidity and myoclonus: a new variant with DPPX antibodies. Neurology 82(17):1521–1528

    Article  CAS  PubMed  Google Scholar 

  24. Lancaster E, Dalmau J (2012) Neuronal autoantigens-pathogenesis, associated disorders and antibody testing. Nat Rev Neurol 8(7):380–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Saiz A, Blanco Y, Sabater L, González F, Bataller L, Casamitjana R et al (2008) Spectrum of neurological syndromes associated with glutamic acid decarboxylase antibodies: diagnostic clues for this association. Brain Journal Neurol 131(Pt 10):2553–2663

    Article  Google Scholar 

  26. Hutchinson M, Waters P, McHugh J, Gorman G, O’Riordan S, Connolly S et al (2008) Progressive encephalomyelitis, rigidity, and myoclonus: a novel glycine receptor antibody. Neurology 71(16):1291–1302

    Article  CAS  PubMed  Google Scholar 

  27. McKeon A, Martinez-Hernandez E, Lancaster E, Matsumoto J, Harvey R, McEvoy K et al (2013) Glycine receptor autoimmune spectrum with stiff-man syndrome phenotype. JAMA Neurol 70(1):44–50

    Article  PubMed  PubMed Central  Google Scholar 

  28. Carvajal-González A, Leite M, Waters P, Woodhall M, Coutinho E, Balint B et al (2014) Glycine receptor antibodies in PERM and Related syndromes: characteristics, clinical features and outcomes. Brain J Neurol 137(Pt 8):2178–2192

    Article  Google Scholar 

  29. Wuerfel E, Bien C, Vincent A, Woodhall M, Brockmann K (2014) Glycine receptor antibodies in a boy with focal epilepsy and episodic behavioral disorder. J Neurol Sci 343(1–2):180–182

    Article  PubMed  Google Scholar 

  30. Borges-Rosa J, Oliveira-Santos M, Silva R, Gomes A, de Almeida J, Costa G et al (2022) [18 F]FDG-PET in cardiac sarcoidosis: a single-centre study in a southern European population. Int J cardiol 347:22

    Article  Google Scholar 

  31. Rodríguez-Alfonso B, Ruiz Solís S, Silva-Hernández L, Pintos Pascual I, Aguado Ibáñez S, Salas AC (2021) 18 F-FDG-PET/CT in SARS-CoV-2 Infection and its Sequelae. Revista Espanola de Med Nucl Imagen Mol. 40(5):299

    Article  Google Scholar 

  32. Rosen R, Fayad L, Wahl R (2006) Increased 18F-FDG Uptake in degenerative disease of the spine: characterization with 18F-FDG PET/CT. J Nucl Med offi Publ Soc Nucl Med. 47(8):3

    Google Scholar 

  33. Tang Y, Liow JS, Zhang Z, Li J, Long T, Li Y et al (2018) the evaluation of dynamic FDG-PET for detecting epileptic foci and analyzing reduced glucose phosphorylation in refractory epilepsy. Front Neurosci 12:993

    Article  PubMed  Google Scholar 

  34. Probasco JC, Solnes L, Nalluri A, Cohen J, Jones KM, Zan E et al (2017) Abnormal brain metabolism on FDG-PET/CT is a common early finding in autoimmune encephalitis. Neurol Neuroimmunol Neuroinflamm. 4:352

    Article  Google Scholar 

  35. Zupanc M, Handler E, Levine R, Jahn T, ZuRhein G, Rozental J et al (1990) Rasmussen encephalitis: epilepsia partialis continua secondary to chronic encephalitis. Pediat neurol. 6(6):397

    Article  CAS  PubMed  Google Scholar 

  36. Bernsen R, Jong B (1997) Limbic encephalitis, specifically depicted by PET - Bernsen 1997 European Journal of Neurology Wiley Online Library. Eur J Neurol 4:507–511

    Article  Google Scholar 

  37. Provenzale J, Barboriak D, Coleman R (1998) Limbic encephalitis: comparison of FDG PET and MR imaging findings. AJR Amer J Roentgenol. 170(6):1659

    Article  CAS  Google Scholar 

  38. Fakhoury T, Abou-Khalil B, Kesller RM (1999) Limbic encephalitis and hyperactive foci on PET scan. Seizure 8:427–430

    Article  CAS  PubMed  Google Scholar 

  39. Fiorella D, Provenzale J, Coleman R, Crain B, Al-Sugair A (2001) (18)F-fluorodeoxyglucose positron emission tomography and MR imaging findings in Rasmussen encephalitis. Amer J Neuroradiol. 22(7):2

    Google Scholar 

  40. McInnes M, Moher D, Thombs B, McGrath T, Bossuyt P, Clifford T et al (2018) Preferred Reporting Items for a Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies: The PRISMA-DTA Statement. JAMA 319(4):388–396

    Article  PubMed  Google Scholar 

  41. Whiting P, Rutjes A, Westwood M, Mallett S, Deeks J, Reitsma J et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155(8):529–536

    Article  PubMed  Google Scholar 

  42. Lagarde S, Lepine A, Caietta E, Pelletier F, Boucraut J, Chabrol B et al (2016) Cerebral (18)FluoroDeoxy-Glucose positron emission tomography in paediatric anti n-methyl-d-aspartate receptor encephalitis: a case series. Brain develop 38(5):461

    Article  Google Scholar 

  43. Wegner F, Wilke F, Raab P, Tayeb SB, Boeck A-L, Haense C et al (2014) Anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis show distinct patterns of brain glucose metabolism in 18F-fluoro-2-deoxy-d-glucose positron emission tomography. BMC Neurol. https://doi.org/10.1186/1471-2377-14-136

    Article  PubMed  PubMed Central  Google Scholar 

  44. Park S, Choi H, Cheon G, Wook Kang K, Lee D (2015) 18F-FDG PET/CT in anti-LGI1 encephalitis: initial and follow-up findings. Clin Nucl Med 40(2):156

    Article  PubMed  Google Scholar 

  45. Celicanin M, Blaabjerg M, Maersk-Moller C, Beniczky S, Marner L, Thomsen C et al (2017) Autoimmune encephalitis associated with voltage-gated potassium channels-complex and leucine-rich glioma-inactivated 1 antibodies - a national cohort study. Eur J Neurol 24(8):999–1005

    Article  CAS  PubMed  Google Scholar 

  46. Zhao X (2019) The different metabolic patterns of brain 18F-FDG PET in anti-NMDA, anti-LGi-1 and anti-GABAb encephalitis. J Nucl Med 60(1):1475

    Google Scholar 

  47. Probasco J, Solnes L, Nalluri A, Cohen J, Jones K, Zan E et al (2017) Decreased occipital lobe metabolism by FDG-PET/CT: An anti-NMDA receptor encephalitis biomarker. Neurol Neuroimmunol Neuroinflam. 5(1):413

    Article  Google Scholar 

  48. Leypoldt F, Buchert R, Kleiter I, Marienhagen J, Gelderblom M, Magnus T et al (2012) Fluorodeoxyglucose positron emission tomography in anti-N-methyl-D-aspartate receptor encephalitis: distinct pattern of disease. J Neurol, Neurosurgand psychiat. 83(7):681

    Article  Google Scholar 

  49. Fisher R, Patel N, Lai E, Schulz P (2012) Two different 18F-FDG brain PET metabolic patterns in autoimmune limbic encephalitis. Clinical Nucl Med. 37(9):213

    Article  Google Scholar 

  50. Baumgartner A, Rauer S, Mader I, Meyer P (2013) Cerebral FDG-PET and MRI findings in autoimmune limbic encephalitis: correlation with autoantibody types. J Neurol 260(11):2744

    Article  PubMed  Google Scholar 

  51. Sarkis R, Nehme R, Chemali Z (2014) Neuropsychiatric and seizure outcomes in nonparaneoplastic autoimmune limbic encephalitis. Epilepsy Behav 39:21–25

    Article  PubMed  Google Scholar 

  52. Turpin S, Martineau P, Levasseur M-A, Meijer I, Décarie J-C, Barsalou J et al (2019) 18F-Flurodeoxyglucose positron emission tomography with computed tomography (FDG PET/CT) findings in children with encephalitis and comparison to conventional imaging. Eur J Nucl Med Mol Imag 46(6):1309–1324

    Article  Google Scholar 

  53. Yuan J, Guan H, Zhou X, Niu N, Li F, Cui L et al (2016) Changing Brain Metabolism Patterns in Patients With ANMDARE: Serial 18F-FDG PET/CT Findings. Clin Nucl Med 41(5):366–370

    Article  PubMed  Google Scholar 

  54. Qian C (2017) 18F FDG-PET features in anti-NMDA receptor encephalitis. J Nucl Med 58(1):223

    Google Scholar 

  55. Solnes LB, Jones KM, Rowe SP, Pattanayak P, Nalluri A, Venkatesan A et al (2017) Diagnostic Value of 18F-FDG PET/CT Versus MRI in the setting of antibody-specific autoimmune encephalitis. J Nucl Med 58:1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tripathi M, Tripathi M, Roy S, Parida G, Ihtisham K, Dash D et al (2018) Metabolic topography of autoimmune non-paraneoplastic encephalitis. Neuroradiology 60(2):1307

    Article  Google Scholar 

  57. Strohm T, Steriade C, Wu G, Hantus S, Rae-Grant A, Larvie M (2019) FDG-PET and MRI in the evolution of new-onset refractory status epilepticus. Am J Neuroradiol 40(2):238–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ge J, Deng B, Guan Y, Bao W, Wu P, Chen X et al (2021) Distinct cerebral 18 F-FDG PET metabolic patterns in anti-N-methyl-D-aspartate receptor encephalitis patients with different trigger factors. Therap Adv Neurol Dis. 14:1756

    Google Scholar 

  59. Nissen M, Ørvik M, Nilsson A, Ryding M, Lydolph M, Blaabjerg M (2021) NMDA-receptor encephalitis in Denmark from 2009 to 2019: a national cohort study. J Neurol 269:1618

    Article  PubMed  Google Scholar 

  60. Moreno-Estébanez A, Durán SB, Bilbao MM, Díaz-Cuervo I, Agirre-Beitia G, Martínez LC et al (2021) Autoimmune encephalitis and related disorders: a retrospective study of 43 cases in a tertiary hospital. Neurol Perspect 1(4):197–205

    Article  Google Scholar 

  61. Solimena M, Folli F, Denis-Donini S, Comi G, Pozza G, De Camilli P et al (1988) Autoantibodies to glutamic acid decarboxylase in a patient with stiff-man syndrome, epilepsy, and type I diabetes mellitus. New Engl J Med. 318(16):1012

    Article  CAS  PubMed  Google Scholar 

  62. Solimena M, Folli F (1988) Stiff-man syndrome and type I diabetes mellitus: a common autoimmune pathogenesis? Annali dellIstituto superiore di sanita. 24(4):583

    CAS  Google Scholar 

  63. Kim T, Lee S, Shin J, Moon J, Lim J, Byun J et al (2014) Clinical manifestations and outcomes of the treatment of patients with GABAB encephalitis. J Neuroimmunol 270(1–2):45–50

    Article  CAS  PubMed  Google Scholar 

  64. Zhu F, Shan W, Lv R, Li Z, Wang Q (2020) Clinical characteristics of Anti-GABA-B receptor encephalitis. Frontiers Neurol. https://doi.org/10.3389/fneur.2020.00403

    Article  Google Scholar 

  65. Shen K, Xu Y, Guan H, Zhong W, Chen M, Zhao J et al (2018) Paraneoplastic limbic encephalitis associated with lung cancer. Sci Rep 8(1):2

    Google Scholar 

  66. Steriade C, Moosa A, Hantus S, Prayson R, Alexopoulos A, Rae-Grant A (2018) Electroclinical features of seizures associated with autoimmune encephalitis. Seizure. 60:22

    Article  Google Scholar 

  67. Wen X, Wang B, Wang C, Han C, Guo S (2021) A retrospective study of patients with GABA B R encephalitis: therapy, disease activity and prognostic factors. Neuropsychiatr Dis Treat 17:99–110

    Article  PubMed  PubMed Central  Google Scholar 

  68. van Coevorden-Hameete MH, de Bruijn MA, de Graaff E, Bastiaansen DA, Schreurs MW, Demmers JA et al (2019) The expanded clinical spectrum of anti-GABABR encephalitis and added value of KCTD16 autoantibodies. Brain 142(6):1631–1643

    Article  PubMed  PubMed Central  Google Scholar 

  69. Dalmau J, Graus F, Villarejo A, Posner JB, Blumenthal D, Thiessen B et al (2004) Clinical analysis of anti-Ma2-associated encephalitis. Brain 127(8):1831–1844

    Article  PubMed  Google Scholar 

  70. Linke R, Schroeder M, Helmberger T, Voltz R (2004) Antibody-positive paraneoplastic neurologic syndromes: value of CT and PET for tumor diagnosis. Neurology 63(2):282–286

    Article  PubMed  Google Scholar 

  71. De Leiris N, Ruel B, Vervandier J, Boucraut J, Grimaldi S, Horowitz T et al (2021) Decrease in the cortex/striatum metabolic ratio on [18 F]-FDG PET: a biomarker of autoimmune encephalitis. Europ J Nucl Med Mol Imag. 221:223

    Google Scholar 

  72. Wang Y, Sadaghiani M, Tian F, Fitzgerald K, Solnes L, Newsome S (2021) Brain and muscle metabolic changes by FDG-PET in stiff person syndrome spectrum disorders. Front Neurol. https://doi.org/10.3389/fneur.2021.692240

    Article  PubMed  PubMed Central  Google Scholar 

  73. Darnell R, Posner J (2006) Paraneoplastic syndromes affecting the nervous system. Semi Oncol. 33(3):270

    Article  Google Scholar 

  74. Crimì F, Camporese G, Lacognata C, Fanelli G, Cecchin D, Zoccarato M (2018) Ovarian Teratoma or Uterine Malformation? PET/MRI as a Novel Useful Tool in NMDAR Encephalitis. In vivo (Athens, Greece) 32(5):1231–1233

    PubMed  Google Scholar 

  75. Zaborowski M, Spaczynski M, Nowak-Markwitz E, Michalak S (2015) Paraneoplastic neurological syndromes associated with ovarian tumors. J Cancer Res Clin Oncol 141(1):99

    Article  CAS  PubMed  Google Scholar 

  76. Aydos U, Arhan E, Akdemir Ü, Akbaş Y, Aydin K, Atay L et al (2020) Utility of brain fluorodeoxyglucose PET in children with possible autoimmune encephalitis. Nucl Med Commun 41(8):800

    Article  CAS  PubMed  Google Scholar 

  77. Kerik-Rotenberg N, Diaz-Meneses I, Hernandez-Ramirez R, Muñoz-Casillas R, Reynoso-Mejia C, Flores-Rivera J et al (2020) A metabolic brain pattern associated with Anti-N-Methyl-D-aspartate receptor encephalitis. Psychosomatics 61(1):39

    Article  PubMed  Google Scholar 

  78. Moreno-Ajona D, Prieto E, Grisanti F, Esparragosa I, Orduz LS, Pérez-Larraya JG et al (2020) 18F-FDG-PET imaging patterns in autoimmune encephalitis: impact of image analysis on the results. Diagnostics 10(6):356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chen C, Wang X, Zhang C, Cui T, Shi W, Guan H et al (2017) Seizure semiology in leucine-rich glioma-inactivated protein 1 antibody-associated limbic encephalitis. Epilepsy Behav 77:90

    Article  PubMed  Google Scholar 

  80. Dodich A, Cerami C, Iannaccone S, Marcone A, Alongi P, Crespi C et al (2016) Neuropsychological and FDG-PET profiles in VGKC autoimmune limbic encephalitis. Brain Cogn 108:81

    Article  PubMed  Google Scholar 

  81. Lv R, Pan J, Zhou G, Wang Q, Shao X, Zhao X et al (2019) Semi-quantitative FDG-PET analysis increases the sensitivity compared with visual analysis in the diagnosis of autoimmune encephalitis. Front Neurol. https://doi.org/10.3389/fneur.2019.00576

    Article  PubMed  PubMed Central  Google Scholar 

  82. Liu X, Shan W, Zhao X, Ren J, Ren G, Chen C et al (2020) The clinical value of 18 F-FDG-PET in autoimmune encephalitis associated with LGI1 antibody. Front Neurol. https://doi.org/10.3389/fneur.2020.00418

    Article  PubMed  PubMed Central  Google Scholar 

  83. Deuschl C, Rüber T, Ernst L, Fendler W, Kirchner J, Mönninghoff C et al (2020) 18F-FDG-PET/MRI in the diagnostic work-up of limbic encephalitis. PLoS ONE 15(1):2279

    Article  Google Scholar 

  84. Malter M, Helmstaedter C, Urbach H, Vincent A, Bien C (2010) Antibodies to glutamic acid decarboxylase define a form of limbic encephalitis. Anna Neurol. 67(4):470

    Article  Google Scholar 

  85. Newey C, Sarwal A, Hantus S (2016) [(18)F]-Fluoro-Deoxy-glucose positron emission tomography scan should be obtained early in cases of autoimmune encephalitis. Auto Dis. 2016:1

    Google Scholar 

  86. Ances B, Vitaliani R, Taylor R, Liebeskind D, Voloschin A, Houghton D et al (2005) Treatment-responsive limbic encephalitis identified by neuropil antibodies: MRI and PET correlates. Brain J Neurol. 128(8):1764

    Article  Google Scholar 

  87. Flanagan EP, Kotsenas AL, Britton W et al (2015) Basal ganglia T1 hyperintensity in LGI1-autoantibody faciobrachial dystonic seizures. Neurol-Neuroimmunol Neuroinflam. 2:6

    Article  Google Scholar 

  88. Yin Y, Wu J, Wu S, Chen S, Cheng W, Li L, et al. 2021 Usefulness of brain FDG PET/CT imaging in pediatric patients with suspected autoimmune encephalitis from a prospective study. European Journal of nuclear medicine and molecular imaging.

  89. Jang Y, Lee S, Bae J, Kim T, Jun J, Moon J et al (2018) LGI1 expression and human brain asymmetry: insights from patients with LGI1-antibody encephalitis. J Neuroinfl. https://doi.org/10.1186/s12974-018-1314-2

    Article  Google Scholar 

  90. Day GS, Gordon BA, Jackson K, Christensen JJ, Rosana Ponisio M, Su Y et al (2017) Tau-PET binding distinguishes patients with early-stage posterior cortical atrophy from amnestic alzheimer disease dementia. Alzheimer Dis Assoc Disord 31(2):87–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Day G, Gordon B, McCullough A, Bucelli R, Perrin R, Bezinger T et al (2021) Flortaucipir (tau) PET in LGI1 antibody encephalitis-Day-2021-annals of clinical and translational neurology - wiley online library. Anna Clin Translat Neurol 8:491–497

    Article  CAS  Google Scholar 

  92. McGinnity C, Koepp M, Hammers A, Riaño Barros D, Pressler R, Luthra S et al (2015) NMDA receptor binding in focal epilepsies. J Neurol Neurosurg Psychiatry 86:1150–1157

    Article  CAS  PubMed  Google Scholar 

  93. Harada R, Hayakawa Y, Ezura M, Lerdsirisuk P, Du Y, Ishikawa Y et al (2021) 18F-SMBT-1: A selective and reversible PET tracer for monoamine oxidase-B imaging. J Nucl Med 62:253

    Article  CAS  PubMed  Google Scholar 

  94. Neelamegam R, Kumar D (2021) Automated radiosynthesis and in vivo PET evaluation of VEGFR2 ligand [11C]BTFP. J Nucl Med 62:1205

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the whole team of the Nuclear Medicine Division of the Clinical Hospital—UNICAMP, the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), and the Department of Neurology—Campinas Medical School – UNICAMP.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Literature search and review, manuscript writing, meta-analysis and content planning, manuscript writing and editing (journal suggestion): BS, AE. Study conception and design: BS, AW. Acquisition of data: BSW. Analysis and interpretation of data: BS. Drafting of manuscript: BS, AE. Critical revision: EAC. Approval of the final version: BS, AWE, Cendes.

Corresponding author

Correspondence to Maurício Martins Baldissin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In this article the affiliation 6 for Mauricio Baldissin was missing.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldissin, M.M., de Souza, E.M., Watanabe, N. et al. FDG–PET in patients with autoimmune encephalitis: a review of findings and new perspectives. Clin Transl Imaging 12, 15–30 (2024). https://doi.org/10.1007/s40336-023-00581-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-023-00581-5

Keywords

Navigation