Skip to main content

Advertisement

Log in

Anemia and PET imaging

  • Systematic Review
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

A Correction to this article was published on 23 August 2021

This article has been updated

Abstract

Aim

Anemia is a blood disorder characterized by reduced Hemoglobin concentration and/or red blood cells numbers. Most common causes of anemia are iron deficiency anemia and anemia of chronic disease (anemia of chronic inflammation), but there is a long list of conditions which cause anemia. Bone marrow (BM), spleen, and liver are the main organs but various other tissues are also involved depending on the type of anemia. In this article, we aimed to review the role of PET imaging in anemia.

Methods

Normal BM, typical and atypical forms of hematopoiesis, pathogenesis of various forms of anemia, and PET findings in anemia with various radiotracers such as 18F-fluorodeoxyglucose, 18F-fluorothymidine, 52Fe compounds and 18F-sodium fluoride were reviewed.

Results

In cases with anemia PET can help in determining the extent of BM expansion, distribution of BM, detecting proliferative activity of BM and BM islands in acellular BM on iliac biopsy, guiding BM biopsies, detecting typical or atypical extramedullary hematopoiesis, acute BM infarctions and various other complications such as osteomyelitis, cerebral infarction and infarction in various other tissues. Anemia-related PET findings can mimic tumor/metastases.

Conclusion

PET imaging is useful for assessing various types of anemia. It is also important to be aware of anemia-related PET findings to avoid mistaking them for malignancy or metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

References

  1. Ricci C, Cova M, Kang YS et al (1990) Normal age-related patterns of cellular and fatty bone marrow distribution in the axial skeleton: MR imaging study. Radiology 177:83–88

    Article  CAS  PubMed  Google Scholar 

  2. Cooper B (2011) The origins of bone marrow as the seedbed of our blood: from antiquity to the time of Osler. Bayl Univ Med Cent Proc 24:115–118

    Article  Google Scholar 

  3. Man Y, Yao X, Yang T, Wang Y (2021) Hematopoietic stem cell niche during homeostasis, malignancy, and bone marrow transplantation. Front Cell Dev Biol 22(9):621214

    Article  Google Scholar 

  4. Boulais PE, Frenette PS (2015) Making sense of hematopoietic stem cell niches. Blood 125:2621–2629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Janssens R, Struyf S, Proost P (2018) The unique structural and functional features of CXCL12. Cell Mol Immunol 15:299–311

    Article  CAS  PubMed  Google Scholar 

  6. Cavill I (2002) Erythropoiesis and iron. Best Pract Res Clin Haematol 15:399–409

    Article  CAS  PubMed  Google Scholar 

  7. Saito H (2014) Metabolism of iron Stores. Nagoya J Med Sci 76:235–254

    PubMed  PubMed Central  Google Scholar 

  8. Ganz T, Nemeth E (2012) Hepcidin and iron homeostasis. Biochim Biophys Acta 1823:1434–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Papanikolaou G, Tzilianos M, Christakis JI et al (2005) Hepcidin in iron overload disorders. Blood 105:4103–4105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Collins JF, Wessling-Resnick M, Knutson MD (2008) Hepcidin regulation of iron transport. J Nutr 138:2284–2288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bunn HF (2013) Erythropoietin. Cold Spring Harb Perspect Med 3:a011619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Kim CH (2010) Homeostatic and pathogenic extramedullary hematopoiesis. J Blood Med 1:13–19

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yamamoto K, Miwa Y, Abe-Suzuki S et al (2016) Extramedullary hematopoiesis: Elucidating the function of the hematopoietic stem cell niche (review). Mol Med Rep 13:587–591

    Article  CAS  PubMed  Google Scholar 

  14. Moreno Chulilla JA, Romero Colás MS, Gutiérrez Martín M (2009) Classification of anemia for gastroenterologists. World J Gastroenterol 15:4627–4637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chaparro CM, Suchdev PS (2019) Anemia epidemiology, pathophysiology, and etiology in low- and middle-income countries. Ann N Y Acad Sci 1450:15–31

    PubMed  PubMed Central  Google Scholar 

  16. Miller JL (2013) Iron deficiency anemia: a common and curable disease. Cold Spring Harb Perspect Med 3:a011866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Berger J, Dillon JC (2002) Control of iron deficiency in developing countries. Sante 12:2230

    Google Scholar 

  18. Lee AI, Okam MM (2011) Anemia in pregnancy. Hematol Oncol Clin N Am 25:241–259

    Article  Google Scholar 

  19. Johnson-Wimbley TD, Graham DY (2011) Diagnosis and management of iron deficiency anemia in the 21st century. Therap Adv Gastroenterol 4:177–184

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gangat N, Wolanskyj AP (2013) Anemia of chronic disease. Semin Hematol 50:232–238

    Article  CAS  PubMed  Google Scholar 

  21. Weiss G (2015) Anemia of chronic disorders: new diagnostic tools and new treatment strategies. Semin Hematol 52:313–320

    Article  PubMed  Google Scholar 

  22. Wiciński M, Liczner G, Cadelski K et al (2020) Anemia of chronic diseases: wider diagnostics-better treatment? Nutrients 12:1784

    Article  PubMed Central  CAS  Google Scholar 

  23. Gilreath JA, Stenehjem DD, Rodgers GM (2014) Diagnosis and treatment of cancer-related anemia. Am J Hematol 89:203–212

    Article  PubMed  Google Scholar 

  24. Bennett CL, Becker PS, Kraut EH, Samaras AT, West DP (2009) Intersecting guidelines: administering erythropoiesis-stimulating agents to chronic kidney disease patients with cancer. Semin Dial 22:1–4

    Article  PubMed  Google Scholar 

  25. Peters M, Heijboer H, Smiers F et al (2012) Diagnosis and management of thalassaemia. BMJ 344:e228

    Article  CAS  PubMed  Google Scholar 

  26. Muncie HL Jr, Campbell J (2009) Alpha and beta thalassemia. Am Fam Phys 80:339–344

    Google Scholar 

  27. Inusa BPD, Hsu LL, Kohli N et al (2019) Sickle cell disease-genetics, pathophysiology, clinical presentation and treatment. Int J Neonatal Screen 5:20

    Article  PubMed  PubMed Central  Google Scholar 

  28. Manwani D, Frenette PS (2013) Vaso-occlusion in sickle cell disease: pathophysiology and novel targeted therapies. Blood 122:3892–3898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sharma R, Nalepa G (2016) Evaluation and management of chronic pancytopenia. Pediatr Rev 37:101–111

    Article  PubMed  PubMed Central  Google Scholar 

  30. Meyers G, Lachowiez C (2019) Aplastic anemia: diagnosis and treatment. J Clin Outcomes Manag 26:229–240

    Google Scholar 

  31. Miano M, Dufour C (2015) The diagnosis and treatment of aplastic anemia: a review. Int J Hematol 101:527–535

    Article  CAS  PubMed  Google Scholar 

  32. Bagby GC Jr (2003) Genetic basis of Fanconi anemia. Curr Opin Hematol 10:68–76

    Article  CAS  PubMed  Google Scholar 

  33. Phillips J, Henderson AC (2018) Hemolytic anemia: evaluation and differential diagnosis. Am Fam Phys 98:354–361

    Google Scholar 

  34. Wang M (2016) Iron deficiency and other types of anemia in infants and children. Am Fam Physician 93:270–278

    PubMed  Google Scholar 

  35. van Schaftingen E, Gerin I (2002) The glucose-6-phosphatase system. Biochem J 362:513–532

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chen M, Lu L, Li J et al (2018) Value of systemic PET/CT in the diagnosis and differential diagnosis of aplastic anemia. Oncol Lett 16:3215–3222

    PubMed  PubMed Central  Google Scholar 

  37. Cicone F, Stalder M, Geiger D et al (2010) Visual and quantitative approach to bone marrow foci of increased glucose uptake on PET/CT in a case of aplastic anaemia. Nuklearmedizin 49:N10–N12

    Article  CAS  PubMed  Google Scholar 

  38. Okuyama C, Kubota T, Matsushima S et al (2009) FDG avid patchy bone marrow misinterpreted as melanoma metastases to bone in a case of aplastic anemia. Clin Nucl Med 34:927–930

    Article  PubMed  Google Scholar 

  39. Piva R, Fiz F, Piana M et al (2014) 18F-fluorodeoxyglucose PET/CT in aplastic anemia: a literature review and the potential of a computational approach. Clin Pract 11:613–621

    Article  CAS  Google Scholar 

  40. Hirata H, Arai Y, Inano S et al (2011) Serial FDG-PET evaluation of a patchy pattern of hematopoiesis at diagnosis in aplastic anemia. Rinsho Ketsueki 52:84–86

    PubMed  Google Scholar 

  41. van der Bruggen W, Glaudemans AWJM, Vellenga E et al (2017) PET in benign bone marrow disorders. Semin Nucl Med 47:397–407

    Article  PubMed  Google Scholar 

  42. Kouba M, Maaloufova J, Campr V et al (2005) G-CSF stimulated islands of haematopoiesis mimicking disseminated malignancy on PET-CT and MRI scans in a patient WITH hypoplastic marrow disorder. Br J Haematol 130:807

    Article  PubMed  Google Scholar 

  43. Horvath L, Seeber A, Uprimny C et al (2020) Disseminated focal 18F-fluoro-deoxyglucose uptake upon granulocyte colony-stimulating factor therapy mimicking malignant bone infiltration: case report of a patient with very severe aplastic anemia. Ther Adv Hematol 11:2040620720977613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Niccoli Asabella A, Altini C et al (2019) Sickle cell diseases: what can nuclear medicine offer? Hell J Nucl Med 22:2–3

    PubMed  Google Scholar 

  45. de Prost N, Kerrou K, Sibony M et al (2010) Fluorine-18 fluorodeoxyglucose with positron emission tomography revealed bone marrow involvement in sarcoidosis patients with anaemia. Respiration 79:25–31

    Article  PubMed  Google Scholar 

  46. Imataki O, Uchida S, Shiroshita K et al (2015) Marked hematopoiesis masquerading multiple bone metastasis in a lung cancer patient with myelodysplastic syndrome. Clin Nucl Med 40:574–575

    Article  PubMed  Google Scholar 

  47. Tsujikawa T, Oikawa H, Tasaki T et al (2020) Integrated [18F]FDG PET/MRI demonstrates the iron-related bone-marrow physiology. Sci Rep 10:13878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Georgiades CS, Neyman EG, Francis IR et al (2002) Typical and atypical presentations of extramedullary hemopoiesis. AJR Am J Roentgenol 179:1239–1243

    Article  PubMed  Google Scholar 

  49. An J, Weng Y, He J et al (2015) Intrathoracic extramedullary hematopoiesis presenting as tumor-simulating lesions of the mediastinum in α-thalassemia: a case report. Oncol Lett 10:1993–1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Qiu D, Hu X, Xu L, Guo X (2015) Extramedullary hematopoiesis on 18F-FDG PET/CT in a patient with thalassemia and nasopharyngeal carcinoma: a case report and literature review. J Cancer Res Ther 11:1034

    Article  PubMed  Google Scholar 

  51. Powars DR, Conti PS, Wong WY et al (1999) Cerebral vasculopathy in sickle cell anemia: diagnotic contribution of positron emission tomography. Blood 93:71–79

    CAS  PubMed  Google Scholar 

  52. Reed W, Jagust W, Al-Mateen M et al (1999) Role of positron emission tomography in determining the extent of CNS ischemia in patients with sickle cell disease. Am J Hematol 60:268–272

    Article  CAS  PubMed  Google Scholar 

  53. de Prost N, Sasanelli M, Deux JF et al (2015) Positron emission tomography with 18f-fluorodeoxyglucose in patients with sickle cell acute chest syndrome. Medicine (Baltimore) 94:821

    Article  Google Scholar 

  54. Witjes MJ, Berghuis-Bergsma N, Phan TT (2006) Positron emission tomography scans for distinguishing between osteomyelitis and infarction in sickle cell disease. Br J Haematol 133:212–214

    Article  CAS  PubMed  Google Scholar 

  55. Ichikawa T, Hashimoto J, Yabe M et al (2014) Detection of early esophageal cancer and cervical lymph node metastases by (18)F-FDG PET/CT in a patient with Fanconi anemia. Clin Nucl Med 39:459–461

    Article  PubMed  Google Scholar 

  56. Aktaş GE, Sarıkaya A, Demir SS (2017) Diffusely increased splenic fluorodeoxyglucose uptake in lung cancer patients. Turk Thorac J 18:6–10

    Article  PubMed  PubMed Central  Google Scholar 

  57. Nam HY, Kim SJ, Kim IJ et al (2010) The clinical implication and prediction of diffuse splenic FDG uptake during cancer surveillance. Clin Nucl Med 35:759–763

    Article  PubMed  Google Scholar 

  58. Agool A, Slart RH, Kluin PM et al (2011) F-18 FLT PET: a noninvasive diagnostic tool for visualization of the bone marrow compartment in patients with aplastic anemia: a pilot study. Clin Nucl Med 36:286–289

    Article  PubMed  Google Scholar 

  59. Tsujikawa T, Tasaki T, Hosono N et al (2019) 18F-FLT PET/MRI for bone marrow failure syndrome-initial experience. EJNMMI Res 9:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Agool A, Schot BW, Jager PL et al (2006) 18F-FLT PET in hematologic disorders: a novel technique to analyze the bone marrow compartment. J Nucl Med 47:1592–1598

    PubMed  Google Scholar 

  61. Agool A, Dierckx RA, de Wolf JT et al (2010) Extramedullary haematopoiesis imaging with 18F-FLT PET. Eur J Nucl Med Mol Imaging 37:1620

    Article  PubMed  PubMed Central  Google Scholar 

  62. Pereira M, Purandare N, Puranik AD et al (2020) Extramedullary hematopoiesis: Detection of common and rare sites of involvement using18F-fluorodeoxyglucose and18F-fluorothymidine positron emission tomography–computed tomography scan. Cancer Res Stat Treat 3:624–626

    Article  Google Scholar 

  63. Campbell BA, Hofman MS, Prince HM (2019) A novel application of [18F]fluorothymidine-PET ([18F]FLT-PET) in clinical practice to quantify regional bone marrow function in a patient with treatment-induced cytopenias and to guide Marrow-Sparing radiotherapy. Clin Nucl Med 44:e624–e626

    Article  PubMed  Google Scholar 

  64. Beshara S, Sörensen J, Lubberink M et al (2003) Pharmacokinetics and red cell utilization of 52Fe/59Fe-labelled iron polymaltose in anaemic patients using positron emission tomography. Br J Haematol 120:853–859

    Article  CAS  PubMed  Google Scholar 

  65. Beshara S, Lundqvist H, Sundin J et al (1999) Pharmacokinetics and red cell utilization of iron(III) hydroxide-sucrose complex in anaemic patients: a study using positron emission tomography. Br J Haematol 104:296–302

    Article  CAS  PubMed  Google Scholar 

  66. Robertson JS, Price RR, Budinger TF et al (1983) Radiation absorbed doses from iron-52, iron-55, and iron-59 used to study ferrokinetics. J Nucl Med 24:339–348

    CAS  PubMed  Google Scholar 

  67. Ferrant A, Rodhain J, Leners N et al (1986) Quantitative assessment of erythropoiesis in bone marrow expansion areas using 52Fe. Br J Haematol 62:247–255

    Article  CAS  PubMed  Google Scholar 

  68. Borgies P, Ferrant A, Leners N et al (1989) Diagnosis of heterotopic bone marrow in the mediastinum using 52Fe and positron emission tomography. Eur J Nucl Med 15:761–763

    Article  CAS  PubMed  Google Scholar 

  69. Yapar AF, Aydin M, Reyhan M (2004) Diffuse splenic Tc-99m MDP uptake in hypersplenic patient. Ann Nucl Med 18:703–705

    Article  PubMed  Google Scholar 

  70. Love C, Din AS, Tomas MB et al (2003) Radionuclide bone imaging: an illustrative review. Radiographics 23:341–358

    Article  PubMed  Google Scholar 

  71. Cerci SS, Suslu H, Cerci C et al (2007) Different findings in Tc-99m MDP bone scintigraphy of patients with sickle cell disease: report of three cases. Ann Nucl Med 21:311–314

    Article  PubMed  Google Scholar 

  72. Gentili A, Miron SD, Adler LP et al (1991) Incidental detection of urinary tract abnormalities with skeletal scintigraphy. Radiographics 11:571–579

    Article  CAS  PubMed  Google Scholar 

  73. Choy D, Murray PC, Hoshi R (1981) The effect of iron on the biodistribution of bone scanning agents in humans. Radiology 140:97–202

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismet Sarikaya.

Ethics declarations

Conflict of interest

No potential conflict of interest relevant to this article was reported.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In this article the reference numbers in the figure captions 2, 6 and 7 were incorrect. Reference numbers are 41, 59 and 61 for figures 2, 6 and 7, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarikaya, I., Baqer, A. & Sarikaya, A. Anemia and PET imaging. Clin Transl Imaging 9, 499–509 (2021). https://doi.org/10.1007/s40336-021-00442-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-021-00442-z

Keywords

Navigation