Skip to main content
Log in

Typical lung carcinoids: review of classification, radiological signs and nuclear imaging findings

  • Expert Review
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

Purpose

In this comprehensive review we present an overview of the main aspects of classification, radiological signs and nuclear imaging findings of typical lung carcinoids (TCs).

Methods

A literature search on the PubMed literature database was conducted using the terms “positron emission tomography—PET”, “PET/CT”, “FDG”, “18F-fluorodeoxyglucose”, “MDCT—Contrast-enhanced multi-detector computed tomography” “typical lung carcinoid” “SRS—Somatostatin receptor scintigraphy”, “68 Ga DOTA-peptides” alone and in combination, extending until December 2019.

Results

TCs are rare tumours, accounting for only 1–2% of all pulmonary neoplasms. They tend to occur usually in the fourth-to-sixth decade of life and are characterized by mitotic count of less 2/2 mm2 and absent necrosis. Contrast-enhanced multi-detector computed tomography (MDCT) is the most largely used imaging modality for the localization, characterization and staging of lung TCs. Nuclear medicine imaging assists MDCT in the diagnosis of these rare tumour entities, especially by somatostatin receptor scintigraphy, PET imaging with Gallium-68-tetrazacyclododecanetetraacetic acid (68 Ga DOTA-peptides) and with 18F-fluorodeoxyglucose (18F-FDG).

Conclusions

TCs of lung are rare lung tumours placed within a defined classification system. MDCT morphological features combined with functional nuclear medicine imaging are an important tool for the detection of these rare neoplasms and contribute to their characterisation and staging. Therefore, MDCT and nuclear medicine parameters could give a preliminary orientation before the pathological examination, on the biological behaviour and the prognostic outcome of TCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Klimstra DS (2016) Pathologic classification of neuroendocrine neoplasms. Hematol Oncol Clin North Am 30:1–19

    PubMed  Google Scholar 

  2. Klöppel G (2017) Neuroendocrine neoplasms: dichotomy, origin and classification. Visc Med 33:324–330

    PubMed  PubMed Central  Google Scholar 

  3. Lloyd RV, Osamura RY, Klöppel G et al (2017) WHO classification of tumours of endocrine organs. IARC Press, Lyon

    Google Scholar 

  4. Bosman FT, Carneiro F, Hruban RH et al (2010) WHO classification of tumours of the digestive system, vol 3. IARC Press, Lyon

    Google Scholar 

  5. Hilal T (2017) Current understanding and approach to well differentiated lung neuroendocrine tumors: an update on classification and management. Ther Adv Med Oncol 9:189–199

    PubMed  Google Scholar 

  6. Travis WD, Brambilla E, Nicholson AG et al (2015) The 2015 world health organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol 10:1243–1260

    PubMed  Google Scholar 

  7. Pelosi G, Sonzogni A, Harari S et al (2017) Classification of pulmonary neuroendocrine tumors: new insights. Transl Lung Cancer Res 6:513–529

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim JY, Hong SM, Ro JY (2017) Recent updates on grading and classification of neuroendocrine tumors. Ann Diagn Pathol 29:11–16

    PubMed  Google Scholar 

  9. Raphael MJ, Chan DL, Law C et al (2017) Principles of diagnosis and management of neuroendocrine tumours. CMAJ 189:E398–E404

    PubMed  PubMed Central  Google Scholar 

  10. Caplin ME, Baudin E, Ferolla P et al (2015) Pulmonary neuroendocrine (Carcinoid) tumors: European neuroendocrine tumor society expert consensus and recommendations for best practice for typical and atypical pulmonary carcinoid. Ann Oncol 26:1604–1620

    CAS  PubMed  Google Scholar 

  11. Chong S, Lee KS, Chung MJ et al (2006) Neuroendocrine tumors of the lung: clinical, pathologic, and imaging findings. Radiographics 26:41–57

    PubMed  Google Scholar 

  12. Detterbeck FC (2014) Clinical presentation and evaluation of neuroendocrine tumors of the lung. Thorac Surg Clin 24:267–276

    PubMed  Google Scholar 

  13. Jeung MY, Gasser B, Gangi A et al (2002) Bronchial carcinoid tumors of the thorax: spectrum of radiologic findings. Radiographics 22:351–365

    PubMed  Google Scholar 

  14. Detterbeck FC (2010) Management of carcinoid tumors. Ann Thorac Surg 89:998–1005

    PubMed  Google Scholar 

  15. Grazzini G, Danti G, Cozzi D (2019) Diagnostic imaging of gastrointestinal neuroendocrine tumours (GI-NETs): relationship between MDCT features and 2010 WHO classification. Radiol Med 124(94):102

    Google Scholar 

  16. Tabaksblat EM, Langer SW, Knigge U et al (2016) Diagnosis and treatment of bronchopulmonary neuroendocrine tumours: state of the art. Acta Oncol 55:3–14

    CAS  PubMed  Google Scholar 

  17. Ramirez RA, Chauhan A, Gimenez J et al (2017) Management of pulmonary neuroendocrine tumors. Rev Endocr Metab Disord 18:433–442

    PubMed  Google Scholar 

  18. Wolin EM (2016) Advances in the diagnosis and management of well-differentiated and intermediate-differentiated neuroendocrine tumors of the lung. Chest 151:1141–1146

    PubMed  Google Scholar 

  19. Öberg K, Sundin A (2016) Imaging of neuroendocrine tumors. Front Horm Res 45:142–151

    PubMed  Google Scholar 

  20. Lococo F, Treglia G, Cesario A et al (2014) Functional imaging evaluation in the detection, diagnosis, and histologic differentiation of pulmonary neuroendocrine tumors. Thorac Surg Clin 24:285–292

    PubMed  Google Scholar 

  21. Arab WA, Collin Y, Sirois M et al (2018) The role of somatostatin-receptor scintigraphy in the diagnosis and staging of pulmonary carcinoid tumors. Clin Oncol 3:1391

    Google Scholar 

  22. Volante M, Bozzalla-Cassione F, Papotti M (2004) Somatostatin receptors and their interest in diagnostic pathology. Endocr Pathol 15:275–291

    CAS  PubMed  Google Scholar 

  23. Janson ET, Gobl A, Kälkner KM et al (1996) A comparison between the efficacy of somatostatin receptor scintigraphy and that of in situ hybridization for somatostatin receptor subtype 2 messenger RNA to predict therapeutic outcome in carcinoid patients. Cancer Res 56:2561–2565

    CAS  PubMed  Google Scholar 

  24. Reubi JC, Schaer JC, Waser B et al (1994) Expression and localization of somatostatin receptor SSTR1, SSTR2, and SSTR3 messenger RNAs in primary human tumors using in situ hybridization. Cancer Res 54:3455–3459

    CAS  PubMed  Google Scholar 

  25. Papotti M, Croce S, Macrì L et al (2000) Correlative immunohistochemical and reverse transcriptase polymerase chain reaction analysis of somatostatin receptor type 2 in neuroendocrine tumors of the lung. Diagn Mol Pathol 9:47–57

    CAS  PubMed  Google Scholar 

  26. Cattoni M, Vallières E, Brown LM et al (2017) Is there a role for traditional nuclear medicine imaging in the management of pulmonary carcinoid tumours? Eur J Cardiothorac Surg 51:874–879

    PubMed  Google Scholar 

  27. Squires MH, Volkan AN, Schuster DM (2015) Octreoscan versus FDG-PET for neuroendocrine tumor staging: a biological approach. Ann Surg Oncol 22:2295–2301

    PubMed  Google Scholar 

  28. Villa G, Ratto GB, Carletto M et al (2003) The incidental discovery of follicular thyroid cancer with In-111 pentetreotide scintigraphy in a patient with carcinoid tumor of the lung. Clin Nucl Med 28:45–46

    PubMed  Google Scholar 

  29. Duarte PS, Zhuang H, Gusmao M et al (2002) In-111 octreotide uptake in the thymus in a patient with Cushing’s syndrome. Clin Nucl Med 27:453–454

    PubMed  Google Scholar 

  30. Garancini S, La Rosa S, De Palma D et al (1997) Uptake of In-111 pentetreotide by normally functioning nodular goiters. Clin Nucl Med 22:625–627

    CAS  PubMed  Google Scholar 

  31. Silva F, Vázquez-Sellés J, Aguilö F et al (1999) Recurrent ectopic adrenocorticotropic hormone producing thymic carcinoid detected with octreotide imaging. Clin Nucl Med 24:109–110

    CAS  PubMed  Google Scholar 

  32. Granberg D, Sundin A, Janson ET et al (2003) Octreoscan in patients with bronchial carcinoid tumours. Clin Endocrinol 59:793–799

    Google Scholar 

  33. Krausz Y, Keidar Z, Kogan I et al (2003) SPECT/CT hybrid imaging with 111Inpentetreotide in assessment of neuroendocrine tumors. Clin Endocrinol 59:565–573

    Google Scholar 

  34. Mariani G, Bruselli L, Kuwert T et al (2010) A review on the clinical uses of SPECT/CT. Eur J Nucl Med Mol Imaging 37:1959–1985

    PubMed  Google Scholar 

  35. Briganti V, Sestini R, Orlando C et al (1997) Imaging of somatostatin receptors by indium-111-pentetreotide correlates with quantitative determination of somatostatin receptor type 2 gene expression in neuroblastoma tumors. Clin Cancer Res 3:2385–2391

    CAS  PubMed  Google Scholar 

  36. Musi M, Carbone RG, Bertocchi C et al (1998) Bronchial carcinoid tumours: a study on clinicopathological features and role of octreotide scintigraphy. Lung Cancer 22:97–102

    CAS  PubMed  Google Scholar 

  37. Yellin A, Zwas ST, Rozenman J et al (2005) Experience with somatostatin receptor scintigraphy in the management of pulmonary carcinoid tumors. Isr Med Assoc J 7:712–716

    PubMed  Google Scholar 

  38. Bombardieri E, Ambrosini V, Aktolun C et al (2010) 111In-pentetreotide scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging 37:1441–1448

    PubMed  Google Scholar 

  39. Gabriel M, Decristoforo C, Donnemiller E et al (2003) An intrapatient comparison of 99mTc-EDDA/HYNIC-TOC with 111In-DTPA-octreotide for diagnosis of somatostatin receptor-expressing tumors. J Nucl Med 44:708–716

    CAS  PubMed  Google Scholar 

  40. Garai I, Barna S, Nagy G et al (2016) Limitations and pitfalls of 99mTc-EDDA/HYNIC-TOC (Tektrotyd) scintigraphy. Nucl Med Rev Cent East Eur 19:93–98

    PubMed  Google Scholar 

  41. Artiko V, Afgan A, Petrović J et al (2016) Evaluation of neuroendocrine tumors with 99mTc-EDDA/HYNIC TOC. Nucl Med Rev Cent East Eur 19:99–103

    PubMed  Google Scholar 

  42. Pavlovic S, Artiko V, Sobic-Saranovic D et al (2010) The utility of 99mTc-EDDA/HYNIC-TOC scintigraphy for assessment of lung lesions in patients with neuroendocrine tumors. Neoplasma 57:68–73

    CAS  PubMed  Google Scholar 

  43. Sobic-Saranovic DP, Pavlovic SV, Artiko VM et al (2012) The utility of two somatostatin analog radiopharmaceuticals in assessment of radiologically indeterminate pulmonary lesions. Clin Nucl Med 37:14–20

    PubMed  Google Scholar 

  44. de Camargo Etchebeher ECS et al (2014) 68Ga-DOTATATE PET/CT, 99mTc-HYNIC-octreotide SPECT/CT, and whole-body mr imaging in detection of neuroendocrine tumors: a prospective trial. J Nucl Med 55(10):1598–1604

    Google Scholar 

  45. Maffione AM, Grassetto G, Rampin L et al (2014) Molecular imaging of pulmonary nodules. AJR Am J Roentgenol 202:W217–W223

    PubMed  Google Scholar 

  46. Pauwels E, Cleeren F, Bormans G et al (2018) Somatostatin receptor PET ligands—the next generation for clinical practice. Am J Nucl Med Mol Imaging 8:311–331

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Poeppel TD, Binse I, Petersenn S et al (2011) 68Ga-DOTATOC versus 68Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors. J Nucl Med 52:1864–1870

    CAS  PubMed  Google Scholar 

  48. Kabasakal L, Demirci E, Ocak M et al (2012) Comparison of 68Ga-DOTATATE and 68Ga-DOTANOC PET/CT imaging in the same patient group with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 39:1271–1277

    PubMed  Google Scholar 

  49. Jindal T, Kumar A, Venkitaraman B et al (2010) Role of (68)Ga-DOTATOC PET/CT in the evaluation of primary pulmonary carcinoids. Korean J Intern Med 25:386–391

    PubMed  PubMed Central  Google Scholar 

  50. Hofmann M, Maecke H, Börner R et al (2001) Biokinetics and imaging with the somatostatin receptor PET radioligand (68)Ga-DOTATOC: preliminary data. Eur J Nucl Med 28:1751–1757

    CAS  PubMed  Google Scholar 

  51. Gabriel M, Decristoforo C, Kendler D et al (2007) 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 48:508–518

    CAS  PubMed  Google Scholar 

  52. Melosky B (2018) Advanced typical and atypical carcinoid tumours of the lung: management recommendations. Curr Oncol 25(Suppl 1):S86–S93

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Gould MK, Maclean CC, Kuschner WG et al (2001) Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions a meta-analysis. JAMA 258:914–924

    Google Scholar 

  54. Erasmus JJ, McAdams HP, Patz EF et al (1998) Evaluation of primary pulmonary carcinoid tumors using FDG PET. AJR Am J Roentgenol 170:1369–1373

    CAS  PubMed  Google Scholar 

  55. Krüger S, Buck AK, Blumstein NM et al (2006) Use of integrated FDG PET/CT imaging in pulmonary carcinoid tumors. J Intern Med 260:545–550

    PubMed  Google Scholar 

  56. Daniels CE, Lowe VJ, Aubry MC et al (2007) The utility of fluorodeoxyglucose positron emission tomography in the evaluation of carcinoid tumors presenting as pulmonary nodules. Chest 131:255–260

    PubMed  Google Scholar 

  57. Stefani A, Franceschetto A, Nesci J et al (2013) Integrated FDG-PET/CT imaging is useful in the approach to carcinoid tumors of the lung. J Cardiothorac Surg 8:223

    PubMed  PubMed Central  Google Scholar 

  58. Grøndahl V, Binderup T, Langer SW et al (2019) Erratum to "Characteristics of 252 patients with bronchopulmonary neuroendocrine tumours treated at the Copenhagen NET Centre of Excellence". Lung Cancer 135:235

    PubMed  Google Scholar 

  59. Pericleous M, Karpathakis A, Toumpanakis C et al (2018) Well-differentiated bronchial neuroendocrine tumors: Clinical management and outcomes in 105 patients. Clin Respir 12:904–914

    CAS  Google Scholar 

  60. Kayani I, Conry BG, Groves AM et al (2009) A comparison of 68Ga-DOTATATE and 18F-FDG PET/CT in pulmonary neuroendocrine tumors. J Nucl Med 50:1927–1932

    PubMed  Google Scholar 

  61. Komek H, Can C, Urakçi Z et al (2019) Comparison of (18F)FDG PET/CT and (68Ga)DOTATATE PET/CT imaging methods in terms of detection of histological subtype and related SUVmax values in patients with pulmonary carcinoid tumors. Nucl Med Commun 40:517–524

    PubMed  Google Scholar 

  62. Jiang Y, Hou G, Cheng W (2019) The utility of 18F-FDG and 68Ga-DOTA-Peptide PET/CT in the evaluation of primary pulmonary carcinoid. A systematic review and meta-analysis. Med (Baltim) 98:e14769

    CAS  Google Scholar 

  63. Lococo F, Perotti G, Cardillo G et al (2015) Multicenter comparison of 18F-FDG and 68Ga-DOTA-peptide PET/CT for pulmonary carcinoid. Clin Nucl Med 40:e183–e189

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Berti.

Ethics declarations

Conflict of interest

The Authors declare that they have no conflict of interest related to the publication of this article.

Ethical standards

The manuscript does not contain clinical studies or patient data

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abenavoli, E., Linguanti, F., Briganti, V. et al. Typical lung carcinoids: review of classification, radiological signs and nuclear imaging findings. Clin Transl Imaging 8, 79–94 (2020). https://doi.org/10.1007/s40336-020-00364-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-020-00364-2

Keywords

Navigation