Skip to main content

Advertisement

Log in

Role of thyroglobulin in the management of patients with differentiated thyroid cancer

  • Expert Review
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

Purpose

To discuss the role and limitations of serum thyroglobulin (Tg) assay in management of differentiated thyroid cancer (DTC) from the perspective of nuclear medicine (NM) physicians.

Methods

We performed a literature search in electronic databases PubMed, Embase, and the Cochrane Library up to January 2019 using the following key words: thyroid, cancer/carcinoma/neoplasm, and thyroglobulin. We included prospective and retrospective original and recent studies written in English regarding Tg in DTC.

Results

Serum Tg level can reflect disease status. It is a tumor marker of DTC. Many studies have confirmed the clinical roles of Tg in monitoring thyroid remnant, locoregional, and distant metastatic disease, tailoring radioactive iodine (RAI) therapy, and predicting persistence or recurrence as well as response to treatment. Most NM physicians in Asia are actively involved in the management of DTC. They are actively using serologic markers such as Tg, anti-Tg antibody, and thyroid stimulating hormone as well as imaging studies including neck ultrasound and RAI whole body scan. Authors suggest an algorithm for the use of serum Tg assay as an indicator of RAI therapy. Pitfalls of interpretation and complementary roles of Tg and imaging studies are discussed.

Conclusions

Serum Tg is a useful biomarker for risk stratification and decision-making in the management of DTC. It is expected to be used more widely in NM practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ATA:

American Thyroid Association

DTC:

Differentiated thyroid cancer

FDG:

Fluorodeoxyglucose

FNA:

Fine needle aspiration

HAb:

Heterophile antibody

IRMA:

Immunoradiometric assay

LC–MS/MS:

Liquid chromatography–tandem mass spectrometry

NM:

Nuclear medicine

PET/CT:

Positron emission tomography/computed tomography

RAI:

Radioactive iodine

rhTSH:

Recombinant human thyroid stimulating hormone

RIA:

Radioimmunoassay

SPECT/CT:

Single photon emission computed tomography/computed tomography

SUVmax:

Maximum standardized uptake value

THW:

Thyroid hormone withdrawal

Tg:

Thyroglobulin

TgAb:

Anti-thyroglobulin antibody

US:

Ultrasound

WBS:

Whole body scan

References

  1. Sherman SI (2003) Thyroid carcinoma. Lancet 361:501–511

    Article  PubMed  Google Scholar 

  2. Rivolta CM, Targovnik HM (2006) Molecular advances in thyroglobulin disorders. Clin Chim Acta 374:8–24

    Article  CAS  PubMed  Google Scholar 

  3. Jabin Z, Kwon SY, Bom HS et al (2018) Clinico-social factors to choose radioactive iodine dose in differentiated thyroid cancer patients: an Asian survey. Nucl Med Commun 39:283–289

    Article  PubMed  Google Scholar 

  4. Haugen BR, Alexander EK, Bible KC et al (2016) 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: the American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 26:1–133

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lee EK, Chung KW, Min HS et al (2012) Preoperative serum thyroglobulin as a useful predictive marker to differentiate follicular thyroid cancer from benign nodules in indeterminate nodules. J Korean Med Sci 27:1014–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Campennì A, Giovanella L, Siracusa M et al (2014) Is malignant nodule topography an additional risk factor for metastatic disease in low-risk differentiated thyroid cancer? Thyroid 24:1607–1611

    Article  CAS  PubMed  Google Scholar 

  7. Patell R, Mikhael A, Tabet M et al (2018) Assessing the utility of preoperative serum thyroglobulin in differentiated thyroid cancer: a retrospective cohort study. Endocrine 61:506–510

    Article  CAS  PubMed  Google Scholar 

  8. Pacini F, Fugazzola L, Lippi F et al (1992) Detection of thyroglobulin in fine needle aspirates of nonthyroidal neck masses: a clue to the diagnosis of metastatic differentiated thyroid cancer. J Clin Endocrinol Metab 74:1401–1404

    CAS  PubMed  Google Scholar 

  9. Baskin HJ (2004) Detection of recurrent papillary thyroid carcinoma by thyroglobulin assessment in the needle washout after fine-needle aspiration of suspicious lymph nodes. Thyroid 14:959–963

    Article  PubMed  Google Scholar 

  10. Boi F, Baghino G, Atzeni F et al (2006) The diagnostic value for differentiated thyroid carcinoma metastases of thyroglobulin (Tg) measurement in washout fluid from fine-needle aspiration biopsy of neck lymph nodes is maintained in the presence of circulating anti-Tg antibodies. J Clin Endocrinol Metab 91:1364–1369

    Article  CAS  PubMed  Google Scholar 

  11. Chung J, Kim EK, Lim H et al (2014) Optimal indication of thyroglobulin measurement in fine-needle aspiration for detecting lateral metastatic lymph nodes in patients with papillary thyroid carcinoma. Head Neck 36:795–801

    Article  PubMed  Google Scholar 

  12. Moon JH, Kim YI, Lim JA et al (2013) Thyroglobulin in washout fluid from lymph node fine-needle aspiration biopsy in papillary thyroid cancer: large-scale validation of the cutoff value to determine malignancy and evaluation of discrepant results. J Clin Endocrinol Metab 98:1061–1068

    Article  CAS  PubMed  Google Scholar 

  13. Zhao H, Wang Y, Wang MJ et al (2017) Influence of presence/absence of thyroid gland on the cutoff value for thyroglobulin in lymph-node aspiration to detect metastatic papillary thyroid carcinoma. BMC Cancer 17:296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sakamoto K, Imanishi Y, Tomita T et al (2016) Usefulness and limitation of thyroglobulin measurement in fine needle aspirates (FNA-Tg) for diagnosis of neck lymph node metastasis from thyroid carcinoma. Nihon Jibiinkoka Gakkai Kaiho 119:721–726

    Article  PubMed  Google Scholar 

  15. Ibrahimpasic T, Nixon IJ, Palmer FL et al (2012) Undetectable thyroglobulin after total thyroidectomy in patients with low- and intermediate-risk papillary thyroid cancer–is there a need for radioactive iodine therapy? Surgery 152:1096–1105

    Article  PubMed  Google Scholar 

  16. Rosario PW, Mourao GF, Siman TL et al (2015) A low postoperative nonstimulated serum thyroglobulin level excludes the presence of persistent disease in low-risk papillary thyroid cancer patients: implication for radioiodine indication. Clin Endocrinol (Oxf) 83:957–961

    Article  CAS  Google Scholar 

  17. Rosario PW, Mineiro Filho AF, Prates BS et al (2012) Postoperative stimulated thyroglobulin of less than 1 ng/mL as a criterion to spare low-risk patients with papillary thyroid cancer from radioactive iodine ablation. Thyroid 22:1140–1143

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Y, Liang J, Yang X et al (2015) Low-dose radioiodine ablation in differentiated thyroid cancer with macroscopic extrathyroidal extension and low level of preablative-stimulated thyroglobulin. Nucl Med Commun 36:553–559

    Article  CAS  PubMed  Google Scholar 

  19. Jin Y, Ruan M, Cheng L et al (2019) Radioiodine uptake and thyroglobulin guided radioiodine remnant ablation in patients with differentiated thyroid cancer: a prospective, randomized, open-label, controlled trial. Thyroid 29:101–110

    Article  CAS  PubMed  Google Scholar 

  20. Kim TY, Kim WB, Kim ES et al (2005) Serum thyroglobulin levels at the time of 131I remnant ablation just after thyroidectomy are useful for early prediction of clinical recurrence in low-risk patients with differentiated thyroid carcinoma. J Clin Endocrinol Metab 90:1440–1445

    Article  CAS  PubMed  Google Scholar 

  21. Yang X, Liang J, Li TJ et al (2015) Postoperative stimulated thyroglobulin level and recurrence risk stratification in differentiated thyroid cancer. Chin Med J (Engl) 128:1058–1064

    Article  CAS  Google Scholar 

  22. Ronga G, Filesi M, Ventroni G et al (1999) Value of the first serum thyroglobulin level after total thyroidectomy for the diagnosis of metastases from differentiated thyroid carcinoma. Eur J Nucl Med 26:1448–1452

    Article  CAS  PubMed  Google Scholar 

  23. Hall FT, Beasley NJ, Eski SJ et al (2003) Predictive value of serum thyroglobulin after surgery for thyroid carcinoma. Laryngoscope 113:77–81

    Article  PubMed  Google Scholar 

  24. Heemstra KA, Liu YY, Stokkel M et al (2007) Serum thyroglobulin concentrations predict disease-free remission and death in differentiated thyroid carcinoma. Clin Endocrinol (Oxf) 66:58–64

    CAS  Google Scholar 

  25. Park HJ, Jeong GC, Kwon SY et al (2014) Stimulated serum thyroglobulin level at the time of first dose of radioactive iodine therapy is the most predictive factor for therapeutic failure in patients with papillary thyroid carcinoma. Nucl Med Mol Imaging 48:255–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang X, Liang J, Li T et al (2016) Preablative stimulated thyroglobulin correlates to new therapy response system in differentiated thyroid cancer. J Clin Endocrinol Metab 101:1307–1313

    Article  CAS  PubMed  Google Scholar 

  27. Piccardo A, Arecco F, Puntoni M et al (2013) Focus on high-risk DTC patients: high postoperative serum thyroglobulin level is a strong predictor of disease persistence and is associated to progression-free survival and overall survival. Clin Nucl Med 38:18–24

    Article  PubMed  Google Scholar 

  28. Lin JD, Huang MJ, Hsu BR et al (2002) Significance of postoperative serum thyroglobulin levels in patients with papillary and follicular thyroid carcinomas. J Surg Oncol 80:45–51

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Y, Hua W, Zhang X et al (2018) The predictive value for excellent response to initial therapy in differentiated thyroid cancer: preablation-stimulated thyroglobulin better than the TNM stage. Nucl Med Commun 39:405–410

    Article  CAS  PubMed  Google Scholar 

  30. Campenni A, Giovanella L, Pignata SA et al (2018) Undetectable or low (< 1 ng/mL) postsurgical thyroglobulin values do not rule out metastases in early stage differentiated thyroid cancer patients. Oncotarget 9:17491–17500

    Article  PubMed  PubMed Central  Google Scholar 

  31. Shen CT, Wei WJ, Qiu ZL et al (2016) Value of post-therapeutic 131I scintigraphy in stimulated serum thyroglobulin-negative patients with metastatic differentiated thyroid carcinoma. Endocrine 51:283–290

    Article  CAS  PubMed  Google Scholar 

  32. Park EK, Chung JK, Lim IH et al (2009) Recurrent/metastatic thyroid carcinomas false negative for serum thyroglobulin but positive by posttherapy I-131 whole body scans. Eur J Nucl Med Mol Imaging 36:172–179

    Article  CAS  PubMed  Google Scholar 

  33. Hu S, Kuang A, Ji T (2015) Clinical outcomes of negative serum thyroglobulin but positive diagnostic I-131 whole-body scans in patients with well-differentiated thyroid cancer after first remnant ablation. J Nucl Med 56(supplement 3):395

    Google Scholar 

  34. Torres MS, Ramirez L, Simkin PH, Braverman LE, Emerson CH (2001) Effect of various doses of recombinant human thyrotropin on the thyroid radioactive iodine uptake and serum levels of thyroid hormones and thyroglobulin in normal subjects. J Clin Endocrinol Metab 86:1660–1664

    Article  CAS  PubMed  Google Scholar 

  35. Weiss R, Magner J (2015) Serial measurements of serum thyroglobulin in response to recombinant human thyrotropin stimulation. Thyroid 25:708–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Taieb D, Lussato D, Guedj E, Roux F, Mundler O (2006) Early sequential changes in serum thyroglobulin after radioiodine ablation for thyroid cancer: possible clinical implications for recombinant human thyrotropin-aided therapy. Thyroid 16:177–179

    Article  CAS  PubMed  Google Scholar 

  37. Kim YI, Im HJ, Paeng JC et al (2015) Serum thyroglobulin level after radioiodine therapy (Day 3) to predict successful ablation of thyroid remnant in postoperative thyroid cancer. Ann Nucl Med 29:184–189

    Article  CAS  PubMed  Google Scholar 

  38. Park HJ, Min JJ, Bom HS et al (2017) Early stimulated thyroglobulin for response prediction after recombinant human thyrotropin-aided radioiodine therapy. Ann Nucl Med 31:616–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lin Y, Li T, Liang J et al (2011) Predictive value of preablation stimulated thyroglobulin and thyroglobulin/thyroid-stimulating hormone ratio in differentiated thyroid cancer. Clin Nucl Med 36(1102–1105):40

    Google Scholar 

  40. Montella L, Caraglia M, Abbruzzese A et al (2004) Molecular technology and the recombinant TSH have changed diagnostics of thyroid carcinoma with positive I-131 whole body scan but low serum thyroglobulin. Exp Mol Med 36:268–273

    Article  CAS  PubMed  Google Scholar 

  41. Bachelot A, Leboulleux S, Baudin E et al (2005) Neck recurrence from thyroid carcinoma: serum thyroglobulin and high-dose total body scan are not reliable criteria for cure after radioiodine treatment. Clin Endocrinol (Oxf) 62:376–379

    Article  Google Scholar 

  42. Avram AM, Esfandiari NH, Wong KK (2015) Preablation 131-I scans with SPECT/CT contribute to thyroid cancer risk stratification and 131-I therapy planning. J Clin Endocrinol Metab 100:1895–1902

    Article  CAS  PubMed  Google Scholar 

  43. Jeong SY, Lee SW, Kim HW et al (2014) Clinical applications of SPECT/CT after first I-131 ablation in patients with differentiated thyroid cancer. Clin Endocrinol (Oxf) 81:445–451

    Article  CAS  Google Scholar 

  44. Hu HY, Liang J, Zhang T et al (2018) Suppressed thyroglobulin performs better than stimulated thyroglobulin in defining an excellent response in patients with differentiated thyroid cancer. Nucl Med Commun 39:247–251

    Article  PubMed  Google Scholar 

  45. Ernaga-Lorea A, Hernandez-Morhain MC, Anda-Apinaniz E et al (2018) Prognostic value of change in anti-thyroglobulin antibodies after thyroidectomy in patients with papillary thyroid carcinoma. Clin Transl Oncol 20:740–744

    Article  CAS  PubMed  Google Scholar 

  46. Campennì A, Pignata SA, Baldari S (2018) Post-operative radioiodine therapy (RaIT) as adjuvant therapy in low–intermediate risk differentiated thyroid cancer. Clin Transl Imaging 6:347–355

    Article  Google Scholar 

  47. Benua RS, Cicale NR, Sonenberg M, Rawson RW (1962) The relation of radioiodine dosimetry to results and complications in the treatment of metastatic thyroid cancer. Am J Roentgenol Radium Ther Nucl Med 87:171–182

    CAS  PubMed  Google Scholar 

  48. Son SH, Lee CH, Jung JH et al (2017) Consideration of serum thyrotropin when interpreting serum thyroglobulin level in patients with differentiated thyroid cancer. Int J Thyroidol 10:5–13

    Article  Google Scholar 

  49. Kowalska A, Palyga I, Gasior-Perczak D et al (2015) The cut-off level of recombinant human TSH-stimulated thyroglobulin in the follow-up of patients with differentiated thyroid cancer. PLoS One 10:e0133852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim MH, Ko SH, Bae JS et al (2012) Combination of initial stimulation thyroglobulins and staging system by revised ATA guidelines can elaborately discriminate prognosis of patients with differentiated thyroid carcinoma after high-dose remnant ablation. Clin Nucl Med 37:1069–1074

    Article  PubMed  Google Scholar 

  51. Ha J, Kim MH, Jo K et al (2017) Recombinant human TSH stimulated thyroglobulin levels at remnant ablation predict structural incomplete response to treatment in patients with differentiated thyroid cancer. Medicine (Baltimore) 96:e7512

    Article  CAS  Google Scholar 

  52. Song M, Jeon S, Kang SR et al (2018) Response prediction of altered thyroglobulin levels after radioactive iodine therapy aided by recombinant human thyrotropin in patients with differentiated thyroid cancer. Nucl Med Mol Imaging 52:287–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bernier MO, Morel O, Rodien P et al (2005) Prognostic value of an increase in the serum thyroglobulin level at the time of the first ablative radioiodine treatment in patients with differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 32:1418–1421

    Article  CAS  PubMed  Google Scholar 

  54. Wang C, Zhang X, Li H et al (2017) Quantitative thyroglobulin response to radioactive iodine treatment in predicting radioactive iodine-refractory thyroid cancer with pulmonary metastasis. PLoS One 12:e0179664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu M, Cheng L, Jin Y et al (2018) Predicting (131)I-avidity of metastases from differentiated thyroid cancer using (18)F-FDG PET/CT in postoperative patients with elevated thyroglobulin. Sci Rep 8:4352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nascimento C, Borget I, Al Ghuzlan A et al (2015) Postoperative fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography: an important imaging modality in patients with aggressive histology of differentiated thyroid cancer. Thyroid 25:437–444

    Article  CAS  PubMed  Google Scholar 

  57. Kloos RT, Ringel MD, Knopp MV et al (2009) Phase II trial of sorafenib in metastatic thyroid cancer. J Clin Oncol 27:1675–1684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Prince HE, Yeh C (2013) Reactivity of human IgM binding murine monoclonal 6B6C1 (IgG2a) with other murine monoclonal IgG antibodies. J Clin Lab Anal 27:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cabanillas ME, Waguespack SG, Bronstein Y et al (2010) Treatment with tyrosine kinase inhibitors for patients with differentiated thyroid cancer: the M. D. Anderson experience. J Clin Endocrinol Metab 95:2588–2595

    Article  CAS  PubMed  Google Scholar 

  60. Lin Y, Wang C, Gao W et al (2017) Overwhelming rapid metabolic and structural response to apatinib in radioiodine refractory differentiated thyroid cancer. Oncotarget 8:42252–42261

    PubMed  PubMed Central  Google Scholar 

  61. Cherk MH, Francis P, Topliss DJ et al (2012) Incidence and implications of negative serum thyroglobulin but positive I-131 whole-body scans in patients with well-differentiated thyroid cancer prepared with rhTSH or thyroid hormone withdrawal. Clin Endocrinol (Oxf) 76:734–740

    Article  CAS  Google Scholar 

  62. Spencer CA, Platler BW, Nicoloff JT (1985) The effect of [125I]thyroglobulin tracer heterogeneity on serum Tg RIA measurement. Clin Chim Acta 153:105–115

    Article  CAS  PubMed  Google Scholar 

  63. Schneider AB, Pervos R (1978) Radioimmunoassay of human thyroglobulin: effect of antithyroglobulin autoantibodies. J Clin Endocrinol Metab 47:126–137

    Article  CAS  PubMed  Google Scholar 

  64. Weightman DR, Mallick UK, Fenwick JD et al (2003) Discordant serum thyroglobulin results generated by two classes of assay in patients with thyroid carcinoma: correlation with clinical outcome after 3 years of follow-up. Cancer 98:41–47

    Article  CAS  PubMed  Google Scholar 

  65. Jahagirdar VR, Strouhal P, Holder G et al (2008) Thyrotoxicosis factitia masquerading as recurrent Graves’ disease: endogenous antibody immunoassay interference, a pitfall for the unwary. Ann Clin Biochem 45:325–327

    Article  CAS  PubMed  Google Scholar 

  66. Algeciras-Schimnich A (2018) Thyroglobulin measurement in the management of patients with differentiated thyroid cancer. Crit Rev Clin Lab Sci 55:205–218

    Article  CAS  PubMed  Google Scholar 

  67. Giovanella L, Clark PM, Chiovato L et al (2014) Thyroglobulin measurement using highly sensitive assays in patients with differentiated thyroid cancer: a clinical position paper. Eur J Endocrinol 171:R33–R46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Giovanella L, Treglia G, Sadeghi R et al (2014) Unstimulated highly sensitive thyroglobulin in follow-up of differentiated thyroid cancer patients: a meta-analysis. J Clin Endocrinol Metab 99:440–447

    Article  CAS  PubMed  Google Scholar 

  69. Spencer C, LoPresti J, Fatemi S (2014) How sensitive (second-generation) thyroglobulin measurement is changing paradigms for monitoring patients with differentiated thyroid cancer, in the absence or presence of thyroglobulin autoantibodies. Curr Opin Endocrinol Diabetes Obes 21:394–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Spencer CA, Takeuchi M, Kazarosyan M et al (1998) Serum thyroglobulin autoantibodies: prevalence, influence on serum thyroglobulin measurement, and prognostic significance in patients with differentiated thyroid carcinoma. J Clin Endocrinol Metab 83:1121–1127

    CAS  PubMed  Google Scholar 

  71. Zahn H, Folsche ET (1966) Reaction of nitrophenylpropionate with N alpha-acetyllysine methylamide. Hoppe Seylers Z Physiol Chem 345:215–220

    Article  CAS  PubMed  Google Scholar 

  72. Giovanella L, Keller F, Ceriani L et al (2009) Heterophile antibodies may falsely increase or decrease thyroglobulin measurement in patients with differentiated thyroid carcinoma. Clin Chem Lab Med 47:952–954

    CAS  PubMed  Google Scholar 

  73. Verburg FA, Waschle K, Reiners C et al (2010) Heterophile antibodies rarely influence the measurement of thyroglobulin and thyroglobulin antibodies in differentiated thyroid cancer patients. Horm Metab Res 42:736–739

    Article  CAS  PubMed  Google Scholar 

  74. Hollowell JG, Staehling NW, Flanders WD et al (2002) Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab 87:489–499

    Article  CAS  PubMed  Google Scholar 

  75. Spencer C, Fatemi S, Singer P et al (2010) Serum Basal thyroglobulin measured by a second-generation assay correlates with the recombinant human thyrotropin-stimulated thyroglobulin response in patients treated for differentiated thyroid cancer. Thyroid 20:587–595

    Article  CAS  PubMed  Google Scholar 

  76. Kushnir MM, Rockwood AL, Roberts WL et al (2013) Measurement of thyroglobulin by liquid chromatography-tandem mass spectrometry in serum and plasma in the presence of antithyroglobulin autoantibodies. Clin Chem 59:982–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ahn BC, Seo JH, Bae JH et al (2005) Effects of anti-thyroglobulin antibody on the measurement of thyroglobulin: differences between immunoradiometric assay kits available. Kor J Nucl Med 39:252–256

    Google Scholar 

  78. Ahn BC, Lee WK, Jeong SY, Lee SW, Lee J (2013) Estimation of true serum thyroglobulin concentration using simultaneous measurement of serum antithyroglobulin antibody. Int J Endocrinol 2013:210639. https://doi.org/10.1155/2013/210639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A3B01006631).

Author information

Authors and Affiliations

Authors

Contributions

SYK: Literature search and review, manuscript writing, and editing. YJZ: Literature search and review, manuscript writing, and editing. YSL: Manuscript writing, editing, and content planning. BCA: Manuscript writing and editing. HSB: Literature search and review, manuscript writing and editing, and content planning.

Corresponding author

Correspondence to Hee-Seung Bom.

Ethics declarations

Conflict of interest

Seong Young Kwon, Yingjie Zhang, Yansong Lin, Byeong-Cheol Ahn, and Hee-Seung Bom declare that they have no conflict of interest.

Ethical standard

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, S.Y., Zhang, Y., Lin, Y. et al. Role of thyroglobulin in the management of patients with differentiated thyroid cancer. Clin Transl Imaging 7, 209–217 (2019). https://doi.org/10.1007/s40336-019-00325-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-019-00325-4

Keywords

Navigation