Skip to main content

Advertisement

Log in

Nuclear medicine in pediatric refractory epilepsy

  • Review Article
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

The nuclear medicine procedures 99mTc-ECD SPECT and 18F-FDG PET play an important diagnostic role in children with refractory seizures. In select patients, surgical removal of epileptogenic cortex is a therapeutic option. Magnetic resonance imaging (MRI) is the principal imaging method used to identify which patients would benefit from the surgery. However, there are cases when MRI does not detect an abnormality (MRI-negative epilepsy). Under these, and other circumstances, functional nuclear medicine studies are helpful in the workup of these patients. A combination of nuclear medicine procedures with MRI and CT depicts functional–anatomic relationships and assists in the non-invasive localization of epileptogenic cortex. Information derived from these procedures is valuable in the selection of candidates for surgical resection. Timing of tracer administration in relation to imaging and monitoring the state of brain activation are essential for accurate interpretation. Ictal and interictal perfusion single photon computed tomography (SPECT), with digital subtraction and registration to MRI can define the region of ictal cortical hyperperfusion more clearly than separate image interpretation. Ictal SPECT is more sensitive than interictal positron emission computed tomography (PET) and interictal PET is more sensitive than interictal SPECT. Interictal SPECT and PET are easier to obtain than ictal SPECT, since they do not require coordination between seizure onset and tracer administration. When surface electrode grids or depth electrodes are planned, anatomic-functional images can assist in their anatomic positioning. The best results are obtained when the planning, execution and interpretation of nuclear medicine procedures are carried out with the support of a well-trained multidisciplinary team familiar with children and refractory seizures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brook RH (1990) National institutes of health consensus development conference statement on surgery for epilepsy. J Am Med Assoc 264(6):729–733

    Article  Google Scholar 

  2. Engel J (1993) Update on surgical treatment of the epilepsies. Summary of the second international palm desert conference on the surgical treatment of the epilepsies (1992). Neurology 43(8):1612

    Article  PubMed  Google Scholar 

  3. Hemb M, Velasco T, Parnes M, Wu J, Lerner J, Matsumoto J, Yudovin S, Shields W, Sankar R, Salamon N (2010) Improved outcomes in pediatric epilepsy surgery. The UCLA experience, 1986–2008. Neurology 74(22):1768–1775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Harvey A, Hopkins I, SBowe J, Cook D, Shield L, Berkovic S (1993) Frontal lobe epilepsy clinical seizure characteristics and localization with ictal 99mTc‐HMPAO SPECT. Neurology 43(10):1966

    Article  CAS  PubMed  Google Scholar 

  5. Lee JJ, Kang WJ, Lee DS, Lee JS, Hwang H, Kim KJ, Hwang Y-S, Chung J-K, Lee MC (2005) Diagnostic performance of 18 F-FDG PET and ictal 99m Tc-HMPAO SPET in pediatric temporal lobe epilepsy: quantitative analysis by statistical parametric mapping, statistical probabilistic anatomical map, and subtraction ictal SPET. Seizure 14(3):213–220

    Article  PubMed  Google Scholar 

  6. Benifla M, Otsubo H, Ochi A, Weiss SK, Donner EJ, Shroff M, Chuang S, Hawkins C, Drake JM, Elliott I (2006) Temporal lobe surgery for intractable epilepsy in children: an analysis of outcomes in 126 children. Neurosurgery 59(6):1203–1214

    Article  PubMed  Google Scholar 

  7. Chiron C, Vera P, Kaminska A, Cieuta C, Hollo A, Ville D, Gardin I, Stievenart J, Dulac O (1999) Ictal SPECT in the epileptic child. Contribution of subtraction interictal images and superposition of with MRI. Revue Neurologique 155(6–7):477–481

    CAS  PubMed  Google Scholar 

  8. Weil S, Noachtar S, Arnold S, Yousry T, Winkler P, Tatsch K (2001) Ictal ECD-SPECT differentiates between temporal and extratemporal epilepsy: confirmation by excellent postoperative seizure control. Nucl Med Commun 22(2):233–237

    Article  CAS  PubMed  Google Scholar 

  9. Seo J, Holland K, Rose D, Rozhkov L, Fujiwara H, Byars A, Arthur T, DeGrauw T, Leach J, Gelfand M (2011) Multimodality imaging in the surgical treatment of children with nonlesional epilepsy. Neurology 76(1):41–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. O’Brien T, So E, Mullan B, Hauser M, Brinkmann B, Bohnen N, Hanson D, Cascino G, Jack C, Sharbrough F (1998) Subtraction ictal SPECT co-registered to MRI improves clinical usefulness of SPECT in localizing the surgical seizure focus. Neurology 50(2):445–454

    Article  PubMed  Google Scholar 

  11. Uijl SG, Leijten FS, Arends JB, Parra J, Van Huffelen AC, Moons KG (2007) The added value of [18F]-fluoro-d-deoxyglucose positron emission tomography in screening for temporal lobe epilepsy surgery. Epilepsia 48(11):2121–2129

    Article  PubMed  Google Scholar 

  12. Jokeit H, Seitz RJ, Markowitsch HJ, Neumann N, Witte OW, Ebner A (1997) Prefrontal asymmetric interictal glucose hypometabolism and cognitive impairment in patients with temporal lobe epilepsy. Brain 120(12):2283–2294

    Article  PubMed  Google Scholar 

  13. Berkovic S, McIntosh A, Kalnins R, Jackson G, Fabinyi G, Brazenor G, Bladin P, Hopper J (1995) Preoperative MRI predicts outcome of temporal lobectomy an actuarial analysis. Neurology 45(7):1358–1363

    Article  CAS  PubMed  Google Scholar 

  14. Spencer SS (1996) Long-term outcome after epilepsy surgery. Epilepsia 37(9):807–813

    Article  CAS  PubMed  Google Scholar 

  15. Guldvog B, Løyning Y, Hauglie-Hanssen E, Flood S, Bjønæs H (1994) Predictive factors for success in surgical treatment for partial epilepsy: a multivariate analysis. Epilepsia 35(3):566–578

    Article  CAS  PubMed  Google Scholar 

  16. Ho SS, Berkovic SF, Berlangieri SU, Newton MR, Egan GF, Tochon-Danguy HJ, McKay WJ (1995) Comparison of ictal SPECT and interictal PET in the presurgical evaluation of temporal lobe epilepsy. Ann Neurol 37(6):738–745

    Article  CAS  PubMed  Google Scholar 

  17. Horky LL, Treves ST (2011) PET and SPECT in brain tumors and epilepsy. Neurosurg Clin N Am 22(2):169–184

    Article  PubMed  Google Scholar 

  18. Hwang S-I, Kim JH, Park SW, Han MH, Yu IK, Lee SH, Lee DS, Lee SK, Chung C-K, Chang K-H (2001) Comparative analysis of MR imaging, positron emission tomography, and ictal single-photon emission CT in patients with neocortical epilepsy. Am J Neuroradiol 22(5):937–946

    CAS  PubMed  Google Scholar 

  19. Kalamangalam GP, Knight EMP, Visweswaran S, Gupta A (2013) Noninvasive predictors of subdural grid seizure localization in children with nonlesional focal epilepsy. J Clin Neurophysiol 30(1):45–50

    Article  PubMed  Google Scholar 

  20. Modi AC, Rausch JR, Glauser TA (2011) Patterns of nonadherence to antiepileptic drug therapy in children with newly diagnosed epilepsy. JAMA 305(16):1669–1676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Modi AC, Rausch JR, Glauser TA (2014) Early pediatric antiepileptic drug nonadherence is related to lower long-term seizure freedom. Neurology 82(8):671–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wallace SJ, Farrell K (2004) Epilepsy in children, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  23. Perissinotti A, Setoain X, Aparicio J, Rubí S, Fuster BM, Donaire A, Carreño M, Bargalló N, Rumiá J, Garcia-Fructuoso G (2014) Clinical role of subtraction ictal SPECT coregistered to MR imaging and 18F-FDG PET in pediatric epilepsy. J Nucl Med 55(7):1099–1105

    Article  CAS  PubMed  Google Scholar 

  24. Habboush IH, Mitchell KD, Mulkern RV, Barnes PD, Treves ST (1996) Registration and alignment of three-dimensional images: an interactive visual approach. Radiology 199(2):573–578

    Article  CAS  PubMed  Google Scholar 

  25. Koo CW, Devinsky O, Hari K, Balasny J, Noz ME, Kramer EL (2003) Stratifying differences on ictal/interictal subtraction SPECT images. Epilepsia 44(3):379–386

    Article  PubMed  Google Scholar 

  26. O’Brien T, So E, Mullan B, Cascino G, Hauser M, Brinkmann B, Sharbrough F, Meyer F (2000) Subtraction peri-ictal SPECT is predictive of extratemporal epilepsy surgery outcome. Neurology 55(11):1668–1677

    Article  PubMed  Google Scholar 

  27. Treves S, Connolly L (1995) Single-photon emission computed tomography (SPECT) in pediatric epilepsy. Neurosurg Clin N Am 6(3):473–480

    CAS  PubMed  Google Scholar 

  28. Treves ST, Chugani HT, Bourgeois BF, Kuruc A (2014) Central nervous system: the brain and cerebrospinal fluid. In: Pediatric nuclear medicine and molecular imaging. Springer, New York, pp 47–97

  29. Devous MD, Leroy RF, Homan RW (1990) Single photon emission computed tomography in epilepsy. In: Seminars in nuclear medicine, vol 4. Elsevier, New York, pp 325–341

  30. Hougaard K, Oikawa T, Sveinsdottir E, Skinhøj E, Ingvar D, Lassen NA (1976) Regional cerebral blood flow in focal cortical epilepsy. Arch Neurol 33(8):527–535

    Article  CAS  PubMed  Google Scholar 

  31. Prince DA, Wilder BJ (1967) Control mechanisms in cortical epileptogenic foci*: surround inhibition. Arch Neurol 16(2):194–202

    Article  CAS  PubMed  Google Scholar 

  32. O’Brien T, So E, Mullan BP, Hauser M, Brinkmann B, Bohnen N, Hanson D, Cascino GD, Jack C, Sharbrough F (1998) Subtraction ictal SPECT co-registered to MRI improves clinical usefulness of SPECT in localizing the surgical seizure focus. Neurology 50(2):445–454

    Article  PubMed  Google Scholar 

  33. Chiron C, Vera P, Kaminska A, Hollo A, Cieuta C, Ville D, Dulac O (1999) Single-photon emission computed tomography: ictal perfusion in childhood epilepsies. Brain Dev 21(7):444–446

    Article  CAS  PubMed  Google Scholar 

  34. Davis RT, Treves ST, Packard AB, Farley JB, Amoling RK, Ulanski JS (1996) Ictal perfusion brain SPECT in pediatric patients with intractable epilepsy: a multidisciplinary approach. J Nucl Med Technol 24(3):219–222

    Google Scholar 

  35. Feichtinger M, Eder H, Holl A, Körner E, Zmugg G, Aigner R, Fazekas F, Ott E (2007) Automatic and remote controlled ictal SPECT injection for seizure focus localization by use of a commercial contrast agent application pump. Epilepsia 48(7):1409–1413

    Article  PubMed  Google Scholar 

  36. Lee HW, Hong SB, Tae WS (2000) Opposite ictal perfusion patterns of subtracted SPECT. Brain 123(10):2150–2159

    Article  PubMed  Google Scholar 

  37. Shoeb A, Edwards H, Connolly J, Bourgeois B, Treves ST, Guttag J (2004) Patient-specific seizure onset detection. Epilepsy Behav 5(4):483–498

    Article  PubMed  Google Scholar 

  38. Adak S, Bhalla R, Vijaya Raj K, Mandal S, Pickett R, Luthra S (2012) Radiotracers for SPECT imaging: current scenario and future prospects. Radiochimica Acta Int J Chem Aspects Nucl Sci Technol 100(2):95–107

    Article  CAS  Google Scholar 

  39. Andrade-Valenca L, Dubeau F, Mari F, Zelmann R, Gotman J (2011) Interictal scalp fast oscillations as a marker of the seizure onset zone. Neurology 77(6):524–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Crawford A, Conners SM, Czachowski M, Muthukrishnan A (2014) Remote-controlled automatic injection versus manual injection in ictal SPECT of seizure patients: experience from a children’s hospital. J Nucl Med Technol 42(3):161–162

    Article  PubMed  Google Scholar 

  41. Kim S, Holder DL, Laymon CM, Tudorascu DL, Deeb EL, Panigrahy A, Mountz JM (2013) Clinical value of the first dedicated, commercially available automatic injector for ictal brain SPECT in presurgical evaluation of pediatric epilepsy: comparison with manual injection. J Nucl Med 54(5):732–738

    Article  CAS  PubMed  Google Scholar 

  42. Kumar A, Chugani HT (2013) The role of radionuclide imaging in epilepsy, Part 1: sporadic temporal and extratemporal lobe epilepsy. J Nucl Med 54(10):1775–1781

    Article  CAS  PubMed  Google Scholar 

  43. Kuzniecky R, Mountz JM, Wheatley G, Morawtz R (1993) Ictal single-photon emission computed tomography demonstrates localized epileptogenesis in cortical dysplasia. Ann Neurol 34(4):627–631

    Article  CAS  PubMed  Google Scholar 

  44. La Fougere C, Rominger A, Förster S, Geisler J, Bartenstein P (2009) PET and SPECT in epilepsy: a critical review. Epilepsy Behav 15(1):50–55

    Article  PubMed  Google Scholar 

  45. Lee J-J, Lee SK, Choi JW, Kim D-W, Park KI, Kim BS, Kang H, Lee DS, Lee S-Y, Kim SH (2009) Ictal SPECT using an attachable automated injector: clinical usefulness in the prediction of ictal onset zone. Acta Radiol 50(10):1160–1168

    Article  PubMed  Google Scholar 

  46. Rocher AB, Chapon F, Blaizot X, Baron J-C, Chavoix C (2003) Resting-state brain glucose utilization as measured by PET is directly related to regional synaptophysin levels: a study in baboons. Neuroimage 20(3):1894–1898

    Article  PubMed  Google Scholar 

  47. Knowlton RC (2006) The role of FDG-PET, ictal SPECT, and MEG in the epilepsy surgery evaluation. Epilepsy Behav 8(1):91–101

    Article  PubMed  Google Scholar 

  48. Packard AB, Roach PJ, Davis RT, Carmant L, Davis R, Riviello J, Holmes G, Barnes PD, O’Tuama LA, Bjornson B (1996) Ictal and interictal technetium-99m-bicisate brain SPECT in children with refractory epilepsy. J Nucl Med 37(7):1101–1105

    CAS  PubMed  Google Scholar 

  49. Gaillard W, Kopylev L, Weinstein S, Conry J, Pearl P, Spanaki M, Fazilat S, Venzina L, Dubovsky E, Theodore W (2002) Low incidence of abnormal 18FDG-PET in children with new-onset partial epilepsy. A prospective study. Neurology 58(5):717–722

    Article  CAS  PubMed  Google Scholar 

  50. Phi JH, Paeng JC, Lee HS, Wang K-C, Cho B-K, Lee J-Y, Park S-H, Lee J, Lee DS, Kim S-K (2010) Evaluation of focal cortical dysplasia and mixed neuronal and glial tumors in pediatric epilepsy patients using 18F-FDG and 11C-methionine pet. J Nucl Med 51(5):728–734

    Article  PubMed  Google Scholar 

  51. Benedek K, Juhász C, Chugani DC, Muzik O, Chugani HT (2006) Longitudinal changes in cortical glucose hypometabolism in children with intractable epilepsy. J Child Neurol 21(1):26–31

    Article  PubMed  Google Scholar 

  52. Hajek M, Antonini A, Leenders KL, Wieser HG (1993) Mesiobasal versus lateral temporal lobe epilepsy. Metabolic differences in the temporal lobe shown by interictal 18F‐FDG positron emission tomography. Neurology 43(1 Part 1):79

    Article  CAS  PubMed  Google Scholar 

  53. Choi JY, Kim SJ, Hong SB, Seo DW, Hong SC, Kim B-T, Kim SE (2003) Extratemporal hypometabolism on FDG PET in temporal lobe epilepsy as a predictor of seizure outcome after temporal lobectomy. Eur J Nucl Med Mol Imaging 30(4):581–587

    Article  PubMed  Google Scholar 

  54. Henry TR, Mazziotta JC, Engel J (1993) Interictal metabolic anatomy of mesial temporal lobe epilepsy. Arch Neurol 50(6):582–589

    Article  CAS  PubMed  Google Scholar 

  55. Chassoux F, Semah F, Bouilleret V, Landre E, Devaux B, Turak B, Nataf F, Roux FX (2004) Metabolic changes and electro-clinical patterns in mesio-temporal lobe epilepsy: a correlative study. Brain 127(1):164–174

    Article  PubMed  Google Scholar 

  56. Kim MA, Heo K, Choo MK, Cho JH, Park SC, Lee JD, Yun M, Park H-J, Lee BI (2006) Relationship between bilateral temporal hypometabolism and EEG findings for mesial temporal lobe epilepsy: analysis of 18 F-FDG PET using SPM. Seizure 15(1):56–63

    Article  PubMed  Google Scholar 

  57. Kumar A, Juhász C, Asano E, Sood S, Muzik O, Chugani HT (2010) Objective detection of epileptic foci by 18F-FDG PET in children undergoing epilepsy surgery. J Nucl Med 51(12):1901–1907

    Article  PubMed  PubMed Central  Google Scholar 

  58. Van Bogaert P, Massager N, Tugendhaft P, Wikler D, Damhaut P, Levivier M, Brotchi J, Goldman S (2000) Statistical parametric mapping of regional glucose metabolism in mesial temporal lobe epilepsy. Neuroimage 12(2):129–138

    Article  PubMed  Google Scholar 

  59. Kumar A, Asano E, Chugani HT (2011) α-[11C]-methyl-l-tryptophan PET for tracer localization of epileptogenic brain regions: clinical studies. Biomark Med 5(5):577–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chiron C, Raynaud C, Mazière B, Zilbovicius M, Laflamme L, Masure M-C, Dulac O, Bourguignon M, Syrota A (1992) Changes in regional cerebral blood flow during brain maturation in children and adolescents. J Nucl Med 33(5):696–703

    CAS  PubMed  Google Scholar 

  61. Chugani HT, Phelps ME, Mazziotta JC (1987) Positron emission tomography study of human brain functional development. Ann Neurol 22(4):487–497

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ted Treves.

Ethics declarations

Conflict of interest

All the authors (S. Ted Treves, Alison Goodkind and Fred Grant) declare no conflict of interest.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Treves, S.T., Goodkind, A. & Grant, F.D. Nuclear medicine in pediatric refractory epilepsy. Clin Transl Imaging 4, 119–130 (2016). https://doi.org/10.1007/s40336-016-0167-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-016-0167-x

Keywords

Navigation