Skip to main content
Log in

Magnetotelluric responses of a vertical inhomogeneous and anisotropic resistivity structure with a transitional layer

  • Original Study
  • Published:
Acta Geodaetica et Geophysica Aims and scope Submit manuscript

Abstract

The theoretical magnetotelluric responses of a vertical inhomogeneous and anisotropic resistivity structure with a transitional layer in which the resistivity is a linear function of depth are investigated. The expressions of the tangential electric and magnetic fields at the surface of the Earth model and the corresponding impedance have been evaluated. The influence of some model parameters such as the anisotropic dipping angles, the anisotropic coefficients and the resistivity contrast as well as the thickness of the transitional layer on the apparent resistivity and impedance phase are treated in detail. The results are graphically illustrated in the form of apparent resistivity and impedance phase curves, and they may be used in the interpretation of magnetotelluric sounding data in some specified geologic situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abramovici F (1974) The forward magnetotelluric problem for an inhomogeneous and anisotropic structure. Geophysics 39:59–68

    Article  Google Scholar 

  • Adetunji AQ, Ferguson IJ, Vayavur R, Cheraghi S, Naghizadeh M, Whymark W, Smith RS, Ayer J, Craven JA (2021) Evidence of magmatism and rifting in the southern superior craton from the temagami geophysical anomaly. Precambrian Res 362:106310

    Article  Google Scholar 

  • Arfken GB, Weber HJ, Harris FE (2013) Mathematical methods for physicists. Academic Press

    Google Scholar 

  • Bedrosian PA, Peacock JR, Dhary M, Sharif A, Feucht DW, Zahran H (2019) Crustal magmatism and anisotropy beneath the arabian shield—a cautionary tale. J Geophys Res Solid Earth 124(10):10153–10179

    Article  Google Scholar 

  • Berdichevsky M, Dmitriyev V, Mershchikova N (1974) Investigation of gradient media in deep electromagnetic sounding. 1zv, Akad. Nauk, Sssr, Series Fiz., Zemli, 10(6):61–72; Engl Trans 1974, Izvestiya, Physics of the Solid Earth,10(6):380–386, 61–72

  • Boas ML (2006) Mathematical methods in the physical sciences. John Wiley and Sons

    Google Scholar 

  • Bologna MS, Padilha AL, Vitorello Í (2005) Geoelectric crustal structures off the sw border of the sao francisco craton, central brazil, as inferred from a magnetotelluric survey. Geophys J Int 162:357–370

    Article  Google Scholar 

  • Cagniard L (1953) Basic theory of the mt methods of geophysical propecting. Geophysics 18:605–635

    Article  Google Scholar 

  • Chave AD, Jones AG (2012) The Magnetotelluric method: theory and practice. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Danda N, Rao CK, Kumar A, Rao PR, Rao PS (2020) Implications for the lithospheric structure of cambay Rift Zone, Western India: inferences from a magnetotelluric study. Geosci Front 11:278–289

    Article  Google Scholar 

  • Didana YL, Thiel S, Heinson G (2014) Magnetotelluric imaging of upper crustal partial melt at tendaho graben in Afar Ethiopia. Geophys Res Lett 41(9):3089–3095

    Article  Google Scholar 

  • Grajales-Nishimura JM, Ramos-Arias MA, Solari L, Murillo-Muñetón G, Centeno-García E, Schaaf P, Torres-Vargas R (2018) The juchatengo complex: an upper-level ophiolite assemblage of late paleozoic age in Oaxaca, Southern Mexico. Int J Earth Sci 107:1005–1031

    Article  Google Scholar 

  • Kao D (1981) Magnetotelluric response on vertically inhomogeneous earth. J Geophys Res 86:3027–3038

    Article  Google Scholar 

  • Kao D (1982) Magnetotelluric response on vertically inhomogeneous earth having conductivity varying exponentially with depth. Geophysics 47:89–99

    Article  Google Scholar 

  • Kao D, Rankin D (1980) Magnetotelluric response on inhomogeneous layered earth. Geophysics 45:1793–1802

    Article  Google Scholar 

  • Ma C, Naghizadeh M, Adetunji A, Lodge RW, Snyder D, Sherlock R (2021) Imaging neoarchean crustal structures: an integrated geologic-seismic-magnetotelluric study in the western wabigoon and winnipeg river Terranes Superior Craton. Precambrian Res 364:106339

    Article  Google Scholar 

  • Mallick K (1971) Can transition in the electrical properties of the earth be detected? Geophys Prospect 19:156–161

    Article  Google Scholar 

  • Mallick K (1970) Magnetotelluric sounding on a layered earth with transitional boundary. Geophys Prospect 18:738–757

    Article  Google Scholar 

  • Menezes PT, Travassos JM (2010) Magnetotellurics as a modeling tool in the extensive magmatic context of Paraná Basin, Brazil. Lead Edge 29:832–840

    Article  Google Scholar 

  • Negi J, Saraf P (1972) Impedance of a plane electromagnetic wave at the surface of a layered conducting earth with dipping anisotropy. Geophys Prospect 20:785–799

    Article  Google Scholar 

  • Negi JG, Saraf PD (1973) Inductive sounding of a stratified earth with transition layer resting on dipping anisotropic beds. Geophys Prospect 21:635–647

    Article  Google Scholar 

  • Pal B, Banerjee B (1990) Magnetotelluric response on a multilayered earth containing transition layer. Gerlands Beiträge Zur Geophysik 99:365–375

    Google Scholar 

  • Pal BP (1998) Magnetotelluric response on a layered earth with non-monotonic resistivity distribution. Deep electromagnetic exploration. Springer, Berlin, pp 425–431

    Google Scholar 

  • Peacock JR, Mangan MT, Mcphee D, Ponce DA (2015) Imaging the magmatic system of mono basin, California, with magnetotellurics in three dimensions. J Geophys Res Solid Earth 120:7273–7289

    Article  Google Scholar 

  • Pek J, Santos FAM (2002) Magnetotelluric impedances and parametric sensitivities for 1-D anisotropic layered media. Comput Geosci 28:939–950

    Article  Google Scholar 

  • Persidis S (2007) Mathematical handbook. ESPI Publishing, Athens

    Google Scholar 

  • Qin L, Yang C (2020) Magnetotelluric soundings on a stratified earth with two transitional layers. Pure Appl Geophys 177(11):5263–5274

    Article  Google Scholar 

  • Ritz M (1984) Inhomogeneous structure of the senegal lithosphere from deep magnetotelluric soundings. J Geophys Res Solid Earth 89:11317–11331

    Article  Google Scholar 

  • Simpson F, Bahr K (2005) Practical magnetotellurics. Cambridge University Press

    Book  Google Scholar 

  • Sinha AK (1969) The magnetotelluric effect in an inhomogeneous and anisotropic earth. Geoexploration 7:9–28

    Article  Google Scholar 

  • Tikhonov AN (1950) The determination of the electrical properties of the deep layers of the earth’s crust. Dokl Acad Nauk SSR 73:295–297 ((in Russian))

    Google Scholar 

  • Tikhonov AN (1986) On determining electrical characteristics of the deep layers of the earth’s crust. In: Vozoff K (ed) Magnetotelluric Methods. Society of Exploration Geophysicists, Tulsa, pp 2–3

    Google Scholar 

Download references

Acknowledgements

Dr. Josef Pek is deeply acknowledged for making his computer code Z1ANIS.FOR publicly available. The authors gratefully acknowledge Dr. Anna Martí and the other anonymous reviewer for their thorough reading of the manuscript and for their insightful questions and constructive comments which certainly improved the quality of this paper. Thanks are also to the editor Viktor Wesztergom for the thoughtful suggestion.

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Funding

This work was partly supported by the National Natural Science Foundation of China (Grant Nos. 42176092 and 41776079) and the Scientific Research Fund of the Second Institute of Oceanography, MNR (Grant No. JG2102).

Author information

Authors and Affiliations

Authors

Contributions

All of three authors discussed the idea of this study. Qin write the original manuscript texts, Yang and Ding review and modify the manuscript.

Corresponding author

Correspondence to Linjiang Qin.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Code availability

The code used in this study may be obtained from the corresponding author upon suitable reasons.

Appendix A: The MT responses in polarization with electric vector oriented along the \(x^{{\prime}}\)-axis.

Appendix A: The MT responses in polarization with electric vector oriented along the \(x^{{\prime}}\)-axis.

When the electric field vector of the normally incident plane wave is along the \(x^{{\prime}}\) direction (strike), the existing electric and magnetic fields components in first two isotropic layers are \(E_{x^{\prime}}\) and \(H_{y^{\prime}}\)(in \(o - x^{{\prime}} y^{{\prime}} z^{{\prime}}\) coordinate system), and in the dipping anisotropic layer are \(E_{x}\), \(H_{y}\) and \(H_{z}\) (in \(o{ - }xyz\) coordinate system).

In \(o - x^{{\prime}} y^{{\prime}} z^{{\prime}}\) coordinate system, the electric and magnetic fields may be calculated according to the algebra described in Sect. 3, here only the final results are given. The solution may be refer to the Sect. 3 in this study and the corresponding context in (Qin and Yang 2020).

The electric and magnetic fields in region 1:

$$\left\{ \begin{gathered} E_{{x^{{\prime}} 1}} = A^{{\prime}} e^{{ - k_{1} z^{{\prime}} }} + B^{{\prime}} e^{{k_{1} z^{{\prime}} }} \hfill \\ H_{{y^{{\prime}} 1}} = - \frac{{k_{1} }}{i\omega \mu }\left( { - A^{{\prime}} e^{{ - k_{1} z^{{\prime}} }} + B^{{\prime}} e^{{k_{1} z^{{\prime}} }} } \right) \hfill \\ \end{gathered} \right..$$
(29)

The electric and magnetic fields in region 2:

$$\left\{ \begin{gathered} E_{{x^{{\prime}} 2}} = C^{{\prime}} \gamma I_{1} \left( \gamma \right) + D^{{\prime}} \gamma K_{1} \left( \gamma \right) \hfill \\ H_{{y^{{\prime}} 2}} = - \frac{{k_{2} }}{i\omega \mu }\left[ {C^{{\prime}} \gamma I_{0} \left( \gamma \right) - D^{{\prime}} \gamma K_{0} \left( \gamma \right)} \right] \hfill \\ \end{gathered} \right..$$
(30)

The electric and magnetic fields in region 3:

$$\left\{ \begin{aligned} E_{{x^{{\prime}} 3}} &= F^{{\prime}} e^{{ - k_{3}^{\prime } z^{{\prime}} }} \hfill \\ H_{{y^{{\prime}} 3}} &= N^{{\prime}} F^{{\prime}} e^{{ - k_{3}^{\prime } z^{{\prime}} }} \hfill \\ \end{aligned} \right.,$$
(31)

where \(N^{{\prime}} = {{k_{3} } \mathord{\left/ {\vphantom {{k_{3} } {i\omega \mu }}} \right. \kern-\nulldelimiterspace} {i\omega \mu }}\).

The impedance at the surface of the model (\(z^{\prime} = 0\)) may be calculated as follows:

$$Z^{{\prime}} = \frac{{E_{{x^{{\prime}} 1}} }}{{H_{{y^{{\prime}} 1}} }} = - \frac{i\omega \mu }{{k_{1} }}\frac{{1 + {{A^{{\prime}} } \mathord{\left/ {\vphantom {{A^{{\prime}} } {B^{{\prime}} }}} \right. \kern-\nulldelimiterspace} {B^{{\prime}} }}}}{{1 - {{A^{{\prime}} } \mathord{\left/ {\vphantom {{A^{{\prime}} } {B^{{\prime}} }}} \right. \kern-\nulldelimiterspace} {B^{{\prime}} }}}},$$
(32)

where \(\frac{{A^{{\prime}} }}{{B^{{\prime}} }} = \frac{{\left[ {U^{{\prime}} K_{0} \left( {\gamma_{2} } \right) + N^{{\prime}} K_{1} \left( {\gamma_{2} } \right)} \right]\left[ {I_{1} \left( {\gamma_{1} } \right) - I_{0} \left( {\gamma_{1} } \right)} \right] + \left[ {U^{{\prime}} I_{0} \left( {\gamma_{2} } \right) - N^{{\prime}} I_{1} \left( {\gamma_{2} } \right)} \right]\left[ {K_{1} \left( {\gamma_{1} } \right) + K_{0} \left( {\gamma_{1} } \right)} \right]}}{{\left[ {U^{{\prime}} K_{0} \left( {\gamma_{2} } \right) + N^{{\prime}} K_{1} \left( {\gamma_{2} } \right)} \right]\left[ {I_{1} \left( {\gamma_{1} } \right) + I_{0} \left( {\gamma_{1} } \right)} \right] + \left[ {U^{{\prime}} I_{0} \left( {\gamma_{2} } \right) - N^{{\prime}} I_{1} \left( {\gamma_{2} } \right)} \right]\left[ {K_{1} \left( {\gamma_{1} } \right) - K_{0} \left( {\gamma_{1} } \right)} \right]}}e^{{2k_{1} z_{1} }} ,\)

$$U^{{\prime}} = - \frac{1}{i\omega \mu }\sqrt {\frac{i\omega \mu }{{\rho_{1} + p^{{\prime}} \left( {z_{2} - z_{1} } \right)}}} ,$$
$$p^{{\prime}} = {{\left( {\rho_{l3} - \rho_{1} } \right)} \mathord{\left/ {\vphantom {{\left( {\rho_{l3} - \rho_{1} } \right)} {\left( {z_{2} - z_{1} } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {z_{2} - z_{1} } \right)}}.$$

Finally, the commonly used MT transfer functions (apparent resistivity and impedance phase) can be easily obtained according to the formulas (28) given in Sect. 3.5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, L., Yang, C. & Ding, W. Magnetotelluric responses of a vertical inhomogeneous and anisotropic resistivity structure with a transitional layer. Acta Geod Geophys 57, 157–176 (2022). https://doi.org/10.1007/s40328-022-00373-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40328-022-00373-9

Keywords

Navigation