Skip to main content
Log in

Uncertainty of GRACE-borne long periodic and secular ice mass variations in Antarctica

  • Original Study
  • Published:
Acta Geodaetica et Geophysica Aims and scope Submit manuscript

Abstract

Glacial ice mass balance of Antarctica can be observed by the twin satellites of the gravity recovery and climate experiment (GRACE). The gravity fields with monthly resolution enable efficient detection of annual, long periodic and secular variations. The present study delivers an error estimation of the long-periodic and secular variations by determining the linear trend of the observed surface mass anomaly series. Among the error sources, the error of the timing of the trend fitting, the error of the glacial isostatic adjustment correction, and the error of the atmospheric correction of the GRACE monthly solutions are discussed. The investigation concludes that apart from West Antarctica, Wilkes Land, Queen Maud Land and Enderby Land no reliable trend estimates of ice mass variation can be expected, thus any results should be treated with care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Acciano F, Böhm G, Brancolini G (2005) Analysis of antarctic glaciations by seismic reflection and refraction tomography. Mar Geol 216:145–154

    Article  Google Scholar 

  • Balmino G, Perosanz F, Rummel R, Sneeuw N, Sünkel H (2001) CHAMP, GRACE and GOCE: mission concepts and simulations. Bollettino di Geofisica Teorica e Applicata 40(3–4):309–320

    Google Scholar 

  • Bamber J, Gomez-Dans JL (2005) The accuracy of digital elevation models of the Antarctic continent. Earth Planet Sci Lett 237(3–4):516–523

    Article  Google Scholar 

  • Baur O (2012) On the computation of mass-change trends from GRACE gravity field time-series. J Geodyn 61:120–128

    Article  Google Scholar 

  • Bettadpur S (2012) Level-2 gravity field product user handbook, GRACE 327-734 (CSR-GR-03-01), Rev 3.0, May 29, 2012, University of Texas, Centre of Space Research

  • Brenner AC, DiMarzio JP, Zwally HJ (2007) Precision and accuracy of satellite radar and laser altimeter data over the continental ice sheets. IEEE Trans Geosci Remote Sens 45(2):321–331

    Article  Google Scholar 

  • Chen JL, Wilson CR, Blankenship DD, Tapley BD (2006) Antarctic mass change rates from GRACE. Geophys Res Lett 33:L11502. doi:10.1029/2006GL026369

    Article  Google Scholar 

  • Cheng MK, Ries JC (2012) Monthly estimates of C20 from 5 SLR satellites based on GRACE RL05 models, GRACE Technical Note 07, The GRACE Project, Center for Space Research, University of Texas at Austin [ftp://podaac.jpl.nasa.gov/allData/grace/docs/TN-07_C20_SLR.txt]

  • Cheng MK, Tapley BD, Ries JC (2013) Deceleration in the Earth’s oblateness. J Geophys Res 118:1–8. doi:10.1002/jgrb.50058

    Google Scholar 

  • Dahle Ch, Flechtner F, Gruber Ch, König D, König R, Michalak G, Neumayer KH (2013) GFZ GRACE Level-2 processing standards document for level-2 product release 0005, Scientific Technical Report STR/12/02—Data, revised edition, GFZ Potsdam, January 2013

  • Dietrich R, Dach R, Engelhardt G, Heck B, Kutterer H, Lindner K, Mayer M, Menge F, Mikolaiski HW, Niemeier W, Pohl M, Salbach H, Schenke HW, Schöne T, Seeber G, Soltau G (1996) The SCAR 95 GPS campaign: objectives, data analysis and final solution. In: Dietrich R (ed) The Geodetic Antarctic Project GAP95—German contributions to the SCAR 95 Epoch Campaign. Deutsche Geodätische Kommission, Reihe B, Heft 304

  • Dietrich R, Dach R, Engelhardt G, Ihde J, Korth W, Kutterer H-J, Lindner K, Mayer M, Menge F, Miller H, Müller C, Niemeier W, Perlt J, Pohl M, Salbach H, Schenke H-W, Schöne T, Seeber G, Veit A, Völksen C (2001) ITRF coordinates and plate velocities from repeated GPS campaigns in Antarctica—an analysis based on different individual solutions. J Geodesy 74(11–12):756–766. doi:10.1007/s001900000147

    Article  Google Scholar 

  • Dziewonski A, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Inter 25:297–356

    Article  Google Scholar 

  • Eicker A, Mayer-Gürr T, Kurtenbach E (2012) Challanges in deriving trends from GRACE, geodesy for planet earth. In: Kenyon SC, Pacino MC, Marti UJ (eds) Proceedings of IAG symposium in Buenos Aires. IAG Symposia Series, vol 131. Springer, Heidelberg, Dordrecht, London, New York, pp 153–160

  • Flechtner F, Dahle Ch, Neumayer KH, König R, Förste Ch (2010) The release 04 CHAMP and GRACE EIGEN gravity field models. In: Flechtner F, Gruber Th, Güntner A, Mandea M, Rothacher M, Wickert J (eds) Satellite geodesy and earth system science, observation of the earth from space. Springer, Berlin, Heidelberg

  • Flechtner F, Dahle Ch, Gruber Ch, Sasgen I, König R, Michalak G, Neumayer KH (2013) Status GFZ RL05 and RL05a GRACE L2 products, presentation at the GRACE Science Team Meeting, Austin, Texas, 23–25 October 2013

  • Földváry L (2012) Antarctica accelerated melting from GRACE monthly gravity field solutions. In: Kenyon SC, Pacino MC, Marti UJ (eds) Proceedings of IAG symposium in Buenos Aires. IAG Symposia Series, vol 131. Springer, Heidelberg, Dordrecht, London, New York, pp 591–597

  • Földváry L (2015) Desmoothing of averaged periodical signals for geodetic applications. Geophys J Int 201(3):1235–1250

    Article  Google Scholar 

  • Földváry L, Kiss A, Su ZX, Wang GC, Wang L (2015) Accuracy investigations of GRACE-borne ice mass variations in Antarctica, (in Chinese). Earth Sci Front 22(4):239–246

    Google Scholar 

  • Forootan E, Didova O, Kusche J, Löcher A (2013) Comparisons of atmospheric data and reduction methods for the analysis of satellite gravimetry observations. J Geophys Res 118(5):2382–2396. doi:10.1002/jgrb.50160

    Article  Google Scholar 

  • Fretwell P, Pritchard HD, Vaughan DG, Bamber JL, Barrand NE, Bell R, Bianchi C, Bingham RG, Blankenship DD, Casassa G, Catania G, Callens D, Conway H, Cook AJ, Corr HFJ, Damaske D, Damm V, Ferraccioli F, Forsberg R, Fujita S, Gim Y, Gogineni P, Griggs JA, Hindmarsh RCA, Holmlund P, Holt JW, Jacobel RW, Jenkins A, Jokat W, Jordan T, King EC, Kohler J, Krabill W, Riger-Kusk M, Langley KA, Leitchenkov G, Leuschen C, Luyendyk BP, Matsuoka K, Mouginot J, Nitsche FO, Nogi Y, Nost OA, Popov SV, Rignot E, Rippin DM, Rivera A, Roberts J, Ross N, Siegert MJ, Smith AM, Steinhage D, Studinger M, Sun B, Tinto BK, Welch BC, Wilson D, Young DA, Xiangbin C, Zirizzotti A (2013) BEDMAP2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7:375–393. doi:10.5194/tc-7-375-2013

    Article  Google Scholar 

  • Griggs JA, Bamber JL (2011) Antarctic ice-shelf thickness from satellite radar altimetry. J Glaciol 57(203):485–498

    Article  Google Scholar 

  • Groh A, Ewert H, Scheinert M, Fritsche M, Rülke A, Richter A, Rosenau R, Dietrich R (2012) An investigation of glacial isostatic adjustment over the Amundsen Sea sector, West Antarctica. Glob Planet Change 98–99:45–53

    Article  Google Scholar 

  • Han D, Wahr J (1995) The viscoelastic relaxation of a realistically stratified earth, and a further analysis of postglacial rebound. Geophys J Int 120:287–311

    Article  Google Scholar 

  • Ivins ER, James TS, Wahr J, Schrama EJO, Landerer FW, Simon KM (2013) Antarctic contribution to sea level rise observed by GRACE with improved GIA correction. J Geophys Res Solid Earth 118:1–16

    Article  Google Scholar 

  • Jekeli C (1981) Alternative methods to smooth the Earth’s gravity field. OSU Report Series, vol 327

  • Jordan TA, Ferraccioli F, Jones PC, Smellie JL, Ghidella M, Corr H (2009) Airborne gravity reveals interior of Antarctic volcano. Phys Earth Planet Inter 175:127–136

    Article  Google Scholar 

  • Lavallée DA, Moore P, Clarke PJ, Petrie EJ, Van Dam T, King MA (2010) J2: an evaluation of new estimates from GPS, GRACE, and load models compared to SLR. Geophys Res Lett 37:L22403

    Article  Google Scholar 

  • Lingle CS, Brenner AC, Zwally HJ (1990) Satellite altimetry, semivariograms, and seasonal elevation changes in the ablation zone of West Greenland. Ann Glaciol 14:158–163

    Article  Google Scholar 

  • Longuevergne L, Scanlon BR, Wilson CR (2010) GRACE hydrological estimates for small basins: evaluating processing approaches on the High Plains Aquifer, USA. Water Resour Res 46:W11517. doi:10.1029/2009WR008564

    Article  Google Scholar 

  • Lythe MB, Vaughan DG, the BEDMAP Consortium (2001) BEDMAP: a new ice thickness and subglacial topographic model of Antarctica. J Geophys Res 106(B6):11,335–11,351

  • Peltier WR (2009) Closure of the budget of global sea level rise over the GRACE era: the importance and magnitudes of the required corrections for global glacial isostatic adjustment. Quat Sci Rev. doi:10.1016j.quascirev.2009.04.004

  • Peltier WR, Argus DF, Drummond R (2015) Space geodesy constrains ice-age terminal deglaciation: the global ICE-6G_C (VM5a) model. J Geophys Res Solid Earth 120:450–487. doi:10.1002/2014JB011176

    Article  Google Scholar 

  • Ramillien G, Lombard A, Cazenave A, Ivins ER, Llubes M, Remy F, Biancale R (2006) Interannual variations of the mass balance of the Antarctica and Greenland ice sheets from GRACE. Glob Planet Change 53:198–208

    Article  Google Scholar 

  • Riva REM, Gunter BC, Urban TJ, Vermeersen BLA, Lindenbergh RC, Helsen MM, Bamber JL, van de Wal RSW, van den Broeke MR, Schutz BE (2009) Glacial Isostatic Adjustment over Antarctica from combined ICESat and GRACE satellite data. Earth Planet Sci Lett 288:516–523

    Article  Google Scholar 

  • Scheinert M (2012) Progress and prospects of the antarctic geoid project (Commission Project 2.4). In: Kenyon SC, Pacino MC, Marti UJ (eds) Proceedings of IAG symposium in Buenos Aires. IAG Symposia Series, vol 131. Springer, Heidelberg Dordrecht London New York, pp 451–456

  • Scheinert M, Dietrich R, Knöfel Ch, Fritsche M, Rülke A, Schröder L, Richter A, Eberlein L (2013) Geodetic GNSS measurements as a basis for geodynamic and glaciological research in Antarctica. Geophysical Research Abstracts, vol 15, EGU2013-5032

  • Schutz BE, Zwally HJ, Shuman CA, Hancock D, DiMarzio JP (2005) Overview of the ICESat mission. Geophys Res Lett 32(21), L21S01. doi:10.1029/2005GL024009

  • Schwabe J, Scheinert M, Dietrich R, Ferraccioli F, Jordan T (2012) Regional geoid improvement over the Antarctic Peninsula utilizing airborne gravity data. In: Kenyon SC, Pacino MC, Marti UJ (eds) Proceedings of IAG symposium in Buenos Aires. IAG Symposia Series, vol 131. Springer, Heidelberg, Dordrecht, London, New York, pp 457–464

  • Shepherd A, Ivins ER, Geruo A, Barletta VR, Bentley MJ, Bettadpur S, Briggs KH, Bromwich DH, Forsberg R, Galin N, Horwath M, Jacobs S, Joughin I, King MA, Lenaerts JTM, Li J, Ligtenberg SRM, Luckman A, Luthcke SB, McMillan M, Meister R, Milne G, Mouginot J, Muir A, Nicolas JP, Paden J, Payne AJ, Pritchard H, Rignot E, Rott H, Sørensen LS, Scambos TA, Scheuchl B, Schrama EJO, Smith B, Sundal AV, van Angelen JH, van de Berg WJ, van den Broeke MR, Vaughan DG, Velicogna I, Wahr J, Whitehouse PL, Wingham DJ, Yi D, Young D, Zwally HJ (2012) A reconciled estimate of ice-sheet mass balance. Science, 338: 1183–1189. doi:10.1126/science.1228102

  • Steffen H, Petrovic S, Müller J, Schmidt R, Wünsch J, Barthelmes F, Kusche J (2009) Significance of secular trends of mass variations determined from GRACE data and comparison with geodynamic models. J Geodyn 46(3–5):155–164

    Google Scholar 

  • Steinhage D, Nixdorf U, Meyer U, Miller H (2001) Subglacial topography and internal structure of central and western Dronning Maud Land, Antarctica, determined from airborne radio echo sounding. J Appl Geophys 47:183–189

    Article  Google Scholar 

  • Swenson S, Wahr J (2002) Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity. J Geophys Res-Solid Earth 107(B9):2193

    Google Scholar 

  • Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33:L08402. doi:10.1029/2005GL025285

    Google Scholar 

  • Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9):L09607

    Article  Google Scholar 

  • Wahr JM, Bergen Z (1986) The effects of mantle anelasticity on nutations, earth tides, and tidal variations in rotation rate. Geophys J R Astron Soc 87:633–668

    Article  Google Scholar 

  • Wahr J, Molenaar M, Bryant F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103(B12):30205–30225

    Article  Google Scholar 

  • Wahr J, Duncan W, Bentley C (2000) A method of combining ICESat and GRACE satellite data to constrain Antarctic mass balance. J Geophys Res 105(B7):16279–16294

    Article  Google Scholar 

  • Wahr J, Swenson S, Velicogna I (2006) Accuracy of GRACE mass estimation. Geophys Res Lett 33(6):L06401. doi:10.1029/2005GL025305

    Article  Google Scholar 

  • Watkins MM, Yuan DN (2012) GRACE JPL level-2 processing standards document for level-2 product release 05, GRACE 327-744, v5.0. Jet Propulsion Laboratory, Pasadena

  • Werth S, Güntner A, Schmidt R, Kusche J (2009) Evaluation of GRACE filter tools from hydrologic perspective. Geophys J Int 179(3):1499–1515

    Article  Google Scholar 

  • Whitehouse PL, Bentley MJ, Milne GA, King MA, Thomas ID (2012) A new glacial isostatic adjustment model for Antarctica: calibrated and tested using observations of relative sea-level change and present-day uplift rates. Geophys J Int 190:1464–1482

    Article  Google Scholar 

  • Williams RS, Ferrigno JG (1988) Estimated present-day area and volume of glaciers and maximum sea level rise potential. Satellite Image Atlas of Glaciers of the World, US Geological Survey (USGS)

  • Williams SDP, Moore P, King MA, Whitehouse PL (2014) Revisiting GRACE Antarctic ice mass trends and accelerations considering autocorrelation. Earth Planet Sci Lett 385:12–21

    Article  Google Scholar 

  • Zenner L, Gruber T, Beutler G, Jäggi A, Flechtner F, Schmidt T, Wickert J, Fagiolini E, Schwarz G, Trautmann T (2012) Using atmospheric uncertainties for GRACE de-aliasing: first results. In: Kenyon SC, Pacino MC, Marti UJ (eds) Proceedings of IAG symposium in Buenos Aires. IAG Symposia Series, vol 131. Springer, Heidelberg, Dordrecht, London, New York, pp 147–152

  • Zhang ZZ, Chao BF, Lu Y, Hsu HT (2009) An effective filtering for GRACE time-variable gravity: fan filter. Geophys Res Lett 36:17311. doi:10.1029/2009GL039459

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annamária Kiss.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiss, A., Földváry, L. Uncertainty of GRACE-borne long periodic and secular ice mass variations in Antarctica. Acta Geod Geophys 52, 497–510 (2017). https://doi.org/10.1007/s40328-016-0185-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40328-016-0185-1

Keywords

Navigation