Skip to main content
Log in

Numerical methods for accurate computation of the eigenvalues of Hermitian matrices and the singular values of general matrices

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

This paper offers a review of numerical methods for computation of the eigenvalues of Hermitian matrices and the singular values of general and some classes of structured matrices. The focus is on the main principles behind the methods that guarantee high accuracy even in the cases that are ill-conditioned for the conventional methods. First, it is shown that a particular structure of the errors in a finite precision implementation of an algorithm allows for a much better measure of sensitivity and that computation with high accuracy is possible despite a large classical condition number. Such structured errors incurred by finite precision computation are in some algorithms e.g. entry-wise or column-wise small, which is much better than the usually considered errors that are in general small only when measured in the Frobenius matrix norm. Specially tailored perturbation theory for such structured perturbations of Hermitian matrices guarantees much better bounds for the relative errors in the computed eigenvalues. Secondly, we review an unconventional approach to accurate computation of the singular values and eigenvalues of some notoriously ill-conditioned structured matrices, such as e.g. Cauchy, Vandermonde and Hankel matrices. The distinctive feature of accurate algorithms is using the intrinsic parameters that define such matrices to obtain a non-orthogonal factorization, such as the LDU factorization, and then computing the singular values of the product of thus computed factors. The state of the art software is discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Here the real case is cited for the sake of simplicity. An analogous analysis applies to the complex Hermitian case.

  2. Real matrices are used only for the sake of simplicity of the presentation.

  3. Here the matrix absolute value is defined element-wise.

  4. It is this mixing of large and small columns by orthogonal transformations oblivious of the difference in length that destroys the accuracy of the bidiagonalizaton. For illustrating examples see [44].

  5. We can also consider column-wise backward errors as in Sect. 4.2, but this involves the behavior of scaled condition numbers of the iterates.

  6. Alternatively, we may assume that X and Y are already well conditioned (thus properly scaled) and that the computed matrices satisfy \( \Vert \delta X\Vert _2 \le \epsilon _1 \Vert X\Vert _2,\quad \Vert \delta Y\Vert _2 \le \epsilon _2 \Vert Y\Vert _2,\quad |\delta D_{ii}| \le \epsilon _3 |D_{ii}|,\quad i=1,\ldots , p. \)

  7. The theory in [107] has been developed for Hermitian pencils \(H-\lambda M\) with positive definite M. Here we take \(M=I\) for the sake of simplicity.

  8. This term is used for typical errors occurring in the finite precision (computer) floating point arithmetic.

  9. Recall the example of the SVD of Vandermonde matrices in Sect. 4.6.3.

References

  1. Alfa, A.S., Xue, J., Ye, Q.: Accurate computation of the smallest eigenvalue of a diagonally dominant \(M\)-matrix. Math. Comput. 71(237), 217–236 (2002)

    MathSciNet  MATH  Google Scholar 

  2. Anderson, E., Bai, Z., Bischof, C., Blackford, L.S., Demmel, J., Dongarra, Jack J., Du Croz, J., Hammarling, S., Greenbaum, A., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia (1999)

    MATH  Google Scholar 

  3. Argyris, J.H.: The natural factor formulation of the stiffnesses for the matrix displacement method. Comput. Methods Appl. Mech. Eng. 5, 97–119 (1975)

    MATH  Google Scholar 

  4. Barlow, J.: More accurate bidiagonal reduction for computing the singular value decomposition. SIAM J. Matrix Anal. Appl. 23, 761–798 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Barlow, J., Demmel, J.: Computing accurate eigensystems of scaled diagonally dominant matrices. SIAM J. Numer. Anal. 27(3), 762–791 (1990)

    MathSciNet  MATH  Google Scholar 

  6. Bhatia, R.: Matrix Analysis. Graduate Texts in Mathematics, 169. Springer, Berlin (1997)

    Google Scholar 

  7. Björck, Å.: Numerical Methods in Matrix Computations. Springer, Berlin (2015)

    MATH  Google Scholar 

  8. Bujanović, Z., Drmač, Z.: How a numerical rank revealing instability affects computer aided control system design. Technical report, SLICOT Working Note 2010-1 (WGS/NICONET Reports) (2010)

  9. Bujanović, Z., Drmač, Z.: New robust ScaLAPACK routine for computing the QR factorization with column pivoting. arXiv e-prints. arXiv:1910.05623 (2019)

  10. Bunch, J.R., Parlett, B.N.: Direct methods for solving symmetric indefinite systems of linear equations. SIAM J. Numer. Anal. 8(4), 639–655 (1971)

    MathSciNet  Google Scholar 

  11. Bürgisser, P., Cucker, F.: Condition: The Geometry of Numerical Algorithms. Springer Publishing Company, Incorporated, New York (2013)

    MATH  Google Scholar 

  12. Businger, P.A., Golub, G.H.: Linear least squares solutions by Householder transformations. Numer. Math. 7, 269–276 (1965)

    MathSciNet  MATH  Google Scholar 

  13. Chu, M.T.: The generalized Toda flow, the QR algorithm and the center manifold theory. SIAM J. Algebraic Discret. Methods 5(2), 187–201 (1984)

    MathSciNet  MATH  Google Scholar 

  14. de Rijk, P.P.M.: A one-sided Jacobi algorithm for computing the singular value decomposition on a vector computer. SIAM J. Sci. Stat. Comput. 10(2), 359–371 (1989)

    MathSciNet  MATH  Google Scholar 

  15. Demmel, J.: On floating point errors in Cholesky. LAPACK working note 14, Computer Science Department, University of Tennessee (1989)

  16. Demmel, J.: The inherent inaccuracy of implicit tridiagonal QR. Preprint series 963, IMA, University of Minnesota, Minneapolis (1992)

  17. Demmel, J.: Accurate singular value decompositions of structured matrices. SIAM J. Matrix Anal. Appl. 21(2), 562–580 (1999)

    MathSciNet  MATH  Google Scholar 

  18. Demmel, J., Dumitriu, I., Holtz, O.: Toward accurate polynomial evaluation in rounded arithmetic. In: Pardo, L., et al. (eds.) Foundations of Computational Mathematics, pp. 36–105. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  19. Demmel, J., Dumitriu, I., Holtz, O., Koev, P.: Accurate and efficient expression evaluation and linear algebra. Acta Numer. 17, 87–145 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Demmel, J., Gragg, W.: On computing accurate singular values and eigenvalues of acyclic matrices. Linear Algebra Appl. 185, 203–218 (1993)

    MathSciNet  MATH  Google Scholar 

  21. Demmel, J., Gu, M., Eisenstat, S., Slapničar, I., Veselić, K., Drmač, Z.: Computing the singular value decomposition with high relative accuracy. Linear Algebra Appl. 299, 21–80 (1999)

    MathSciNet  MATH  Google Scholar 

  22. Demmel, J., Kahan, W.: Accurate singular values of bidiagonal matrices. SIAM J. Sci. Stat. Comput. 11(5), 873–912 (1990)

    MathSciNet  MATH  Google Scholar 

  23. Demmel, J., Koev, P.: Accurate SVDs of weakly diagonally dominant M-matrices. Numer. Math. 98, 99–104 (2004)

    MathSciNet  MATH  Google Scholar 

  24. Demmel, J., Koev, P.: Accurate SVDs of polynomial Vandermonde matrices involving orthonormal polynomials. Linear Algebra Appl. 417(2), 382–396 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Demmel, J., Veselić, K.: Jacobi’s method is more accurate than QR. SIAM J. Matrix Anal. Appl. 13(4), 1204–1245 (1992)

    MathSciNet  MATH  Google Scholar 

  26. Dhillon, I.S., Parlett, B.N.: Multiple representations to compute orthogonal eigenvectors of symmetric tridiagonal matrices. Linear Algebra Appl. 387, 1–28 (2004)

    MathSciNet  MATH  Google Scholar 

  27. Dhillon, I.S., Parlett, B.N.: Orthogonal eigenvectors and relative gaps. SIAM J. Matrix Anal. Appl. 25(3), 858–899 (2004)

    MathSciNet  MATH  Google Scholar 

  28. Dhillon, I.S., Parlett, B.N., Vömel, C.: The design and implementation of the MRRR algorithm. ACM Trans. Math. Softw. 32(4), 533–560 (2006)

    MathSciNet  MATH  Google Scholar 

  29. Dongarra, J., Moler, C., Bunch, J., Stewart, G.: LINPACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia (1979)

    MATH  Google Scholar 

  30. Dopico, F.M., Koev, P.: Accurate symmetric rank revealing and eigendecompositions of symmetric structured matrices. SIAM J. Matrix Anal. Appl. 28(4), 1126–1156 (2006)

    MathSciNet  MATH  Google Scholar 

  31. Dopico, F.M., Koev, P.: Perturbation theory for the LDU factorization and accurate computations for diagonally dominant matrices. Numer. Math. 119, 337 (2011)

    MathSciNet  MATH  Google Scholar 

  32. Dopico, F.M., Koev, P., Molera, J.M.: Implicit standard Jacobi gives high relative accuracy. Numer. Math. 113(4), 519–553 (2009)

    MathSciNet  MATH  Google Scholar 

  33. Dopico, F.M., Molera, J.M., Moro, J.: An orthogonal high relative accuracy algorithm for the symmetric eigenproblem. SIAM J. Matrix Anal. Appl. 25(2), 301–351 (2003)

    MathSciNet  MATH  Google Scholar 

  34. Dopico, F.M., Moro, J.: A note on multiplicative backward errors of accurate SVD algorithms. SIAM J. Matrix Anal. Appl. 25(4), 1021–1031 (2004)

    MathSciNet  MATH  Google Scholar 

  35. Dopico, F.M., Moro, J., Molera, J.M.: Weyl-type relative perturbation bounds for eigensystems of Hermitian matrices. Linear Algebra Appl. 309, 3–18 (2000)

    MathSciNet  MATH  Google Scholar 

  36. Drmač, Z.: Computing the singular and the generalized singular values. Ph.D. thesis, Lehrgebiet Mathematische Physik, Fernuniversität Hagen, Germany (1994)

  37. Drmač, Z.: On the condition behaviour in the Jacobi method. SIAM J. Matrix Anal. Appl. 17(3), 509–514 (1996)

    MathSciNet  MATH  Google Scholar 

  38. Drmač, Z.: Implementation of Jacobi rotations for accurate singular value computation in floating point arithmetic. SIAM J. Sci. Comput. 18, 1200–1222 (1997)

    MathSciNet  MATH  Google Scholar 

  39. Drmač, Z.: Accurate computation of the product induced singular value decomposition with applications. SIAM J. Numer. Anal. 35(5), 1969–1994 (1998)

    MathSciNet  MATH  Google Scholar 

  40. Drmač, Z.: A posteriori computation of the singular vectors in a preconditioned Jacobi SVD algorithm. IMA J. Numer. Anal. 19, 191–213 (1999)

    MathSciNet  MATH  Google Scholar 

  41. Drmač, Z.: New accurate algorithms for singular value decomposition of matrix triplets. SIAM J. Matrix Anal. Appl. 21(3), 1026–1050 (2000)

    MathSciNet  MATH  Google Scholar 

  42. Drmač, Z.: A global convergence proof for cyclic Jacobi methods with block rotations. SIAM J. Matrix Anal. Appl. 31(3), 1329–1350 (2010)

    MathSciNet  MATH  Google Scholar 

  43. Drmač, Z.: SVD of Hankel matrices in Vandermonde–Cauchy product form. Electron. Trans. Numer. Anal. 44, 593–623 (2015)

    MathSciNet  MATH  Google Scholar 

  44. Drmač, Z.: Algorithm 977: a QR-preconditioned QR SVD method for computing the SVD with high accuracy. ACM Trans. Math. Softw. 44(1), 11:1–11:30 (2017)

    MathSciNet  MATH  Google Scholar 

  45. Drmač, Z., Bujanović, Z.: On the failure of rank-revealing QR factorization software—a case study. ACM Trans. Math. Softw. 35(2), 1–28 (2008)

    MathSciNet  Google Scholar 

  46. Drmač, Z., Hari, V.: On the quadratic convergence of the \(J\)-symmetric Jacobi method. Numer. Math. 64, 147–180 (1993)

    MathSciNet  MATH  Google Scholar 

  47. Drmač, Z., Veselić, K.: New fast and accurate Jacobi SVD algorithm: I. SIAM J. Matrix Anal. Appl. 29(4), 1322–1342 (2008)

    MathSciNet  MATH  Google Scholar 

  48. Drmač, Z., Veselić, K.: New fast and accurate Jacobi SVD algorithm: II. SIAM J. Matrix Anal. Appl. 29(4), 1343–1362 (2008)

    MathSciNet  MATH  Google Scholar 

  49. Eisenstat, S., Ipsen, I.: Relative perturbation techniques for singular value problems. SIAM J. Numer. Anal. 32(6), 1972–1988 (1995)

    MathSciNet  MATH  Google Scholar 

  50. Fernando, K.V., Parlett, B.N.: Implicit Cholesky algorithms for singular values and vectors of triangular matrices. Numer. Linear Algebra Appl. 2(6), 507–531 (1995)

    MathSciNet  MATH  Google Scholar 

  51. Forsythe, G.E., Henrici, P.: The cyclic Jacobi method for computing the principal values of a complex matrix. Trans. Am. Math. Soc. 94(1), 1–23 (1960)

    MathSciNet  MATH  Google Scholar 

  52. Gasca, M., Pena, J.M.: On Factorizations of Totally Positive Matrices, pp. 109–130. Springer Netherlands, Dordrecht (1996)

    MATH  Google Scholar 

  53. Goldstine, H.H., Murray, H.H., von Neumann, J.: The Jacobi method for real symmetric matrices. J. Assoc. Comp. Mach.6, 59–96 (1959) [also in J. von Neumann, Collected Works, vol. V, pages 573-610, Pergamon Press, New York, 1973]

  54. Golub, G., Klema, V., Stewart, G.W.: Rank degeneracy and least squares problems. Technical report STAN-CS-76-559, Computer Science Department, Stanford University (1976)

  55. Golub, G.H., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix. SIAM J. Numer. Anal. 2(2), 205–224 (1965)

    MathSciNet  MATH  Google Scholar 

  56. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. The Johns Hopkins University Press, Baltimore (2013)

    MATH  Google Scholar 

  57. Gonnet, P., Pachón, R., Trefethen, L.N.: Robust rational interpolation and least-squares. Electron. Trans. Numer. Anal. 38, 146–167 (2011)

    MathSciNet  MATH  Google Scholar 

  58. Großer, B., Lang, B.: An \(O(n^2)\) algorithm for the bidiagonal SVD. Linear Algebra Appl. 358(1), 45–70 (2003)

    MathSciNet  MATH  Google Scholar 

  59. Gu, M., Eisenstat, S.: A divide-and-conquer algorithm for the bidiagonal SVD. SIAM J. Matrix Anal. Appl. 16, 79–92 (1995)

    MathSciNet  MATH  Google Scholar 

  60. Gu, M., Eisenstat, S.: An efficient algorithm for computing a strong rank-revealing QR factorization. SIAM J. Sci. Comput. 17(4), 848–869 (1996)

    MathSciNet  MATH  Google Scholar 

  61. Gu, M., Eisenstat, S.C.: A divide-and-conquer algorithm for the symmetric tridiagonal eigenproblem. SIAM J. Matrix Anal. Appl. 16(1), 172–191 (1995)

    MathSciNet  MATH  Google Scholar 

  62. Gutknecht, M.H., Trefethen, L.N.: Real polynomial Chebyshev approximation by the Carathéodory–Fejér method. SIAM J. Numer. Anal. 19(2), 358–371 (1982)

    MathSciNet  MATH  Google Scholar 

  63. Hammarling, S.: Numerical solution of the stable, non-negative definite Lyapunov equation. IMA J. Numer. Anal. 2, 303–323 (1982)

    MathSciNet  MATH  Google Scholar 

  64. Hari, V.: On sharp quadratic convergence bounds for the serial Jacobi methods. Numer. Math. 60, 375–406 (1991)

    MathSciNet  MATH  Google Scholar 

  65. Haut, T., Beylkin, G., Monzón, L.: Solving Burgers’ equation using optimal rational approximations. Appl. Comput. Harmon. Anal. 34(1), 83–95 (2013)

    MathSciNet  MATH  Google Scholar 

  66. Haut, T.S., Beylkin, G.: Fast and accurate con-eigenvalue algorithm for optimal rational approximations. SIAM J. Matrix Anal. Appl. 33(4), 1101–1125 (2012)

    MathSciNet  MATH  Google Scholar 

  67. Heath, M.T., Laub, A.J., Paige, C.C., Ward, R.C.: Computing the singular value decomposition of a product of two matrices. SIAM J. Sci. Stat. Comput. 7, 1147–1159 (1986)

    MathSciNet  MATH  Google Scholar 

  68. Hestenes, M.R.: Inversion of matrices by biorthogonalization and related results. J. SIAM 6(1), 51–90 (1958)

    MathSciNet  MATH  Google Scholar 

  69. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2002)

    MATH  Google Scholar 

  70. Higham, N.J.: \(J\)-orthogonal matrices: properties and generation. SIAM Rev. 45(3), 504–519 (2003)

    MathSciNet  MATH  Google Scholar 

  71. Hogben, L.: Handbook of Linear Algebra, 2nd edn. CRC Press, Taylor & Francis Group, Boca Raton, FL (2014)

    Google Scholar 

  72. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  73. Ipsen, I.C.F.: Relative perturbation results for matrix eigenvalues and singular values. Acta Numer. 7, 151–201 (1998)

    MathSciNet  MATH  Google Scholar 

  74. Jacobi, C.G.J.: Über ein leichtes Verfahren die in der Theorie der Säcularstörungen vorkommenden Gleichungen numerisch aufzulösen. Crelle’s Journal für reine und angew Math. 30, 51–95 (1846)

    MathSciNet  Google Scholar 

  75. Kahan, W.: How futile are mindless assessments of roundoff in floating-point computation? Technical report, Department of Mathematics, University of California at Berkeley (2006)

  76. Kleinsteuber, M.: A sort-Jacobi algorithm for semisimple Lie algebras. Linear Algebra Appl. 430(1), 155–173 (2009)

    MathSciNet  MATH  Google Scholar 

  77. Kleinsteuber, M., Helmke, U., Huper, K.: Jacobi’s algorithm on compact Lie algebras. SIAM J. Matrix Anal. Appl. 26(1), 42–69 (2004)

    MathSciNet  MATH  Google Scholar 

  78. Koev, P.: Accurate eigenvalues and SVDs of totally nonnegative matrices. SIAM J. Matrix Anal. Appl. 27(1), 1–23 (2005)

    MathSciNet  MATH  Google Scholar 

  79. Koev, P.: Accurate computations with totally nonnegative matrices. SIAM J. Matrix Ana. Appl. 29(3), 731–751 (2007)

    MathSciNet  MATH  Google Scholar 

  80. Li, Ren-Cang: Relative perturbation theory: I. Eigenvalue and singular value variations. SIAM J. Matrix Anal. Appl. 19(4), 956–982 (1998)

    MathSciNet  MATH  Google Scholar 

  81. Li, Ren-Cang: Relative perturbation theory: II. Eigenspace and singular subspace variations. SIAM J. Matrix Anal. Appl. 20(2), 471–492 (1998)

    MathSciNet  MATH  Google Scholar 

  82. Van Loan, ChF: Generalizing the singular value decomposition. SIAM J. Numer. Anal. 13(1), 76–83 (1976)

    MathSciNet  MATH  Google Scholar 

  83. Mascarenhas, W.F.: A note on Jacobi being more accurate than QR. SIAM J. Matrix Anal. Appl. 15(1), 215–218 (1993)

    MathSciNet  MATH  Google Scholar 

  84. Mathias, R., Stewart, G.W.: A block QR algorithm for singular value decomposition. Linear Algebra Appl. 182, 91–100 (1993)

    MathSciNet  MATH  Google Scholar 

  85. Ostrowski, A.M.: A quantitative formulation of Sylvester’s law of inertia. Proc. Natl. Acad. Sci. (USA) 45, 740–744 (1959)

    MathSciNet  MATH  Google Scholar 

  86. Paige, C.C.: Properties of numerical algorithms related to computing controllability. IEEE Trans. Autom. Control 26(1), 130–138 (1981)

    MathSciNet  MATH  Google Scholar 

  87. Parlett, B.N.: The Symmetric Eigenvalue Problem, Classics In Applied Mathematics 20. SIAM, Philadelphia (1998)

    Google Scholar 

  88. Parlett, B.N., Dhillon, I.S.: Relatively robust representations of symmetric tridiagonals. Linear Algebra Appl. 309(1), 121–151 (2000)

    MathSciNet  MATH  Google Scholar 

  89. Peláez, M., Moro, J.: Accurate factorization and eigenvalue algorithms for symmetric DSTU and TSC matrices. SIAM J. Matrix Anal. Appl. 28(4), 1173–1198 (2006)

    MathSciNet  MATH  Google Scholar 

  90. Pietzsch, E.: Genaue Eigenwertberechnung nichtsingulärer schiefsymmetrischer Matrizen mit einem Jacobi–änlichen Verfahren. Ph.D. thesis, Lehrgebiet Mathematische Physik, Fernuniversität Hagen, Germany (1993)

  91. Rice, J.H.: A theory of condition. SIAM J. Numer. Anal. 3(2), 287–310 (1966)

    MathSciNet  MATH  Google Scholar 

  92. Rutishauser, H.: The Jacobi method for real symmetric matrices. Numer. Math. 9, 1–10 (1966)

    MathSciNet  MATH  Google Scholar 

  93. Slapničar, I.: Accurate symmetric eigenreduction by a Jacobi method. Ph.D. thesis, Lehrgebiet Mathematische Physik, Fernuniversität Hagen, Germany (1992)

  94. Slapničar, I.: Componentwise analysis of direct factorization of real symmetric and Hermitian matrices. Linear Algebra Appl. 272, 227–275 (1998)

    MathSciNet  MATH  Google Scholar 

  95. Slapničar, I.: Highly accurate symmetric eigenvalue decomposition and hyperbolic SVD. Linear Algebra Appl. 358, 387–424 (2002)

    MathSciNet  MATH  Google Scholar 

  96. Slapničar, I., Truhar, N.: Relative perturbation theory for hyperbolic eigenvalue problem. Linear Algebra Appl. 309(1), 57–72 (2000)

    MathSciNet  MATH  Google Scholar 

  97. Smoktunowicz, Alicja: A note on the strong componentwise stability of algorithms for solving symmetric linear systems. Demonstr. Math. 28(2), 443–448 (1995)

    MathSciNet  MATH  Google Scholar 

  98. Sorensen, D., Zhou, Y.: Direct methods for matrix Sylvester and Lyapunov equations. J. Appl. Math. 2003(6), 277–303 (2003)

    MathSciNet  MATH  Google Scholar 

  99. Stewart, G.W.: QR sometimes beats Jacobi. Technical report TR-95-32, Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742 (1995)

  100. Stewart, G.W.: The QLP approximation to the singular value decomposition. Technical report TR-97-75, Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742 (1997)

  101. Stewart, G.W., Sun, J.-G.: Matrix Perturbation Theory. Academic Press, New York (1990)

    MATH  Google Scholar 

  102. van der Sluis, A.: Condition numbers and equilibration of matrices. Numer. Math. 14, 14–23 (1969)

    MathSciNet  MATH  Google Scholar 

  103. Vavasis, S.A.: Stable finite elements for problems with wild coefficients. SIAM J. Numer. Anal. 33(3), 890–916 (1996)

    MathSciNet  MATH  Google Scholar 

  104. Veselić, K.: A Jacobi eigenreduction algorithm for definite matrix pairs. Numer. Math. 64, 241–269 (1993)

    MathSciNet  MATH  Google Scholar 

  105. Veselić, K.: Perturbation theory for the eigenvalues of factorised symmetric matrices. Linear Algebra Appl. 309, 85–102 (2000)

    MathSciNet  MATH  Google Scholar 

  106. Veselić, K., Hari, V.: A note on a one-sided Jacobi algorithm. Numer. Math. 56, 627–633 (1989)

    MathSciNet  MATH  Google Scholar 

  107. Veselić, K., Slapničar, I.: Floating-point perturbations of Hermitian matrices. Linear Algebra Appl. 195, 81–116 (1993)

    MathSciNet  MATH  Google Scholar 

  108. Watkins, D.S.: Isospectral flows. SIAM Rev. 26(3), 379–391 (1984)

    MathSciNet  MATH  Google Scholar 

  109. Wilkinson, J.H.: Rounding Errors in Algebraic Processes. Prentice-Hall, Inc., New York (1963)

    MATH  Google Scholar 

  110. Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Springer, Berlin (1965)

    MATH  Google Scholar 

  111. Ye, Q.: Computing singular values of diagonally dominant matrices to high relative accuracy. Math. Comput. 77, 2195–2230 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Jesse Barlow, Jim Demmel, Froilán Martínez Dopico, Vjeran Hari, Plamen Koev, Juan Manuel Molera Molera, Eberhard Pietzsch, Ivan Slapničar, Ninoslav Truhar, Krešimir Veselić, for numerous exciting discussions on accurate matrix computations, and in particular to Julio Moro Carreño for encouragement to write this paper and for many useful comments that improved the presentation. Funding was provided by Hrvatska Zaklada za Znanost (IP-11-2013-9345, IP-2019-04-6268).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zlatko Drmač.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drmač, Z. Numerical methods for accurate computation of the eigenvalues of Hermitian matrices and the singular values of general matrices. SeMA 78, 53–92 (2021). https://doi.org/10.1007/s40324-020-00229-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40324-020-00229-8

Keywords

Mathematics Subject Classification

Navigation