Skip to main content

Advertisement

Log in

Shifted Lagrangian Jacobi collocation scheme for numerical solution of a model of HIV infection

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

In this paper, a system of nonlinear ordinary differential equations (NODEs), namely the equation model of the human immunodeficiency virus (HIV) infection of \(CD4^+ T\) cells, is studied. Our approach is implemented by using the Shifted-Lagrangian Jacobi (SLJ) polynomials formed by Shifted-Jacobi-Gauss-Radau (SJ-GR) points. In a new insight, by applying Quasilinearization method (QLM) the system of NODE’s is simplified and changed into a system of Linear ordinary differential equations (LODE’s) and instead of working on a system of NODE’s, all processes and works are done on a system of LODE’s. Therefore, unlike the most of the current studies working on nonlinear algebraic equations, the problem is reduced to a system of linear algebraic equations. Then, to solve the problem and find the unknown approximation coefficients, a system of \(Ax=b\) has been solved. At the end, the accuracy and reliability of this method are shown and comparisons with the other current work’s results are made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Perelson, A.S.: Modeling the interaction of the immune system with HIV, pp. 350–370. Springer, Berlin (1989)

    MATH  Google Scholar 

  2. Gandomani, M.R., Kajani, M.T.: Numerical solution of a Fractional order model of HIV infection of \(CD4^+\)T cells using Müntz-Legendre Polynomials. International Journal Bioautomation 20(2) (2016)

  3. Culshaw, R.V., Ruan, S.: A delay-differential equation model of HIV infection of \(CD4^+\)T cells. Math. Biosci. 165(1), 27–39 (2000)

    Article  Google Scholar 

  4. Doha, E., Bhrawy, A., Hafez, R., Abdelkawy, M.: A Chebyshev-Gauss-Radau scheme for nonlinear Hyperbolic system of first order. Appl. Math. Inf. Sci. 8(2), 535–544 (2014)

    Article  MathSciNet  Google Scholar 

  5. Parand, K., Hosseini, L.: Numerical approach of flow and mass transfer on nonlinear stretching sheet with chemically reactive species using rational Jacobi collocation method. Int. J. Numer. Methods Heat Fluid Flow 23(5), 772–789 (2013)

    Article  MathSciNet  Google Scholar 

  6. Parand, K., Rezaei, A.R., Taghavi, A.: Numerical approximations for population growth model by rational Chebyshev and Hermite functions collocation approach. Math. Methods Appl. Sci. 33(17), 2076–2086 (2010)

    Article  MathSciNet  Google Scholar 

  7. Parand, K., Taghavi, A.: Rational scaled generalized Laguerre function collocation method for solving the Blasius equation. J. Comput. Appl. Math. 233(4), 980–989 (2009)

    Article  MathSciNet  Google Scholar 

  8. Rad, J.A., Kazem, S., Shaban, M., Parand, K., Yildirim, A.: Numerical solution of fractional differential equations with a Tau method based on Legendre and Bernstein polynomials. Math. Methods Appl. Sci. 37(3), 329–342 (2014)

    Article  MathSciNet  Google Scholar 

  9. Parand, K., Dehghan, M., Baharifard, F.: Solving a Laminar boundary layer equation with the Rational Gegenbauer functions. Appl. Math. Model. 37(3), 851–863 (2013)

    Article  MathSciNet  Google Scholar 

  10. Rezaei, A.R., Shaban, M., Parand, K.: Numerical investigation on nano boundary layer equation with Navier boundary condition. Methods Appl. Sci. 35(8), 976–992 (2012)

    Article  MathSciNet  Google Scholar 

  11. Amani, R.J., Kazem, S., Parand, K.: Radial basis functions approach on optimal control problems: a numerical investigation. Journal of Vibration and Control 20(9) (2014)

  12. Kazem, S., Amani, R.J., Parand, K., Shaban, M., Saberi, H.: The numerical study on the unsteady flow of gas in a semi-infinite porous medium using an RBF collocation method. Int. J. Comput. Math. 89(16), 2240–2258 (2012)

    Article  MathSciNet  Google Scholar 

  13. Parand, K., Hossayni, S.A., Rad, J.A.: Operation matrix method based on Bernstein polynomials for the Riccati differential equation and Volterra population model. Appl. Math. Model. 40(2), 993–1011 (2016)

    Article  MathSciNet  Google Scholar 

  14. Amani, R.J., Parand, K., Vincenzo, L.: Pricing European and American options by radial basis point interpolation. Appl. Math. Comput. 251, 363–377 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Parand, K., Nikarya, M.: Application of Bessel functions for solving differential and integro-differential equations of the fractional order. Appl. Math. Model. 38(15), 4137–4147 (2014)

    Article  MathSciNet  Google Scholar 

  16. Merdan, M.: Homotopy Perturbation method for solving a model for HIV infection of \(CD4^+\)T cells.stanbul Ticaret niversitesi (2007)

  17. Ongun, M.Y.: The Laplace Adomian decomposition method for solving a model for HIV infection of \(CD4^+\)T cells. Math. Comput. Model. 53(5), 597–603 (2011)

    Article  MathSciNet  Google Scholar 

  18. Merdan, M., Gökdoğan, A., Yildirim, A.: On the numerical solution of the model for HIV infection of \(CD4^+\)T cells. Comput. Math. Appl. 62(1), 118–123 (2011)

    Article  MathSciNet  Google Scholar 

  19. Arafa, A., Rida, S., Khalil, M.: Fractional order model of human T-cell Lymphotropic virus I (HTLV-I) infection of \(CD4^+\)T-cells. Adv. Stud. Biol. 3(7), 347–353 (2011)

    Google Scholar 

  20. Ghoreishi, M., Ismail, A.M., Alomari, A.: Application of the Homotopy analysis method for solving a model for HIV infection of \(CD4^+\)T-cells. Math. Comput. Model. 54(11), 3007–3015 (2011)

    Article  MathSciNet  Google Scholar 

  21. Gökdoan, A., Yildirim, A., Merdan, M.: Solving a Fractional order model of HIV infection of \(CD4^+\)T cells. Math. Comput. Model. 54(9), 2132–2138 (2011)

    Article  MathSciNet  Google Scholar 

  22. Yüzbaşı, Ş.: A numerical approach to solve the model for HIV infection of \(CD4^+\)T cells. Appl. Math. Model. 36(12), 5876–5890 (2012)

    Article  MathSciNet  Google Scholar 

  23. Doğan, N.: Numerical treatment of the model for HIV infection of \(CD4^+\)T cells. Dynamics in Nature and Society (2012)

  24. Khan, Y., Vazquez-Leal, H., Wu, Q.: An efficient iterated method for mathematical biology model. Neural Comput. Appl. 23(3–4), 677–682 (2013)

    Article  Google Scholar 

  25. Srivastava, V.K., Awasthi, M.K., Kumar, S.: Numerical approximation for HIV infection of \(CD4^+\)T cells mathematical model. Ain Shams Eng. J. 5(2), 625–629 (2014)

    Article  Google Scholar 

  26. Atangana, A., Doungmo Goufo, E.F.: Computational analysis of the model describing HIV infection of \(CD4^+\)T cells. BioMed research international (2014)

  27. Khalid, M., Sultana, M., Zaidi, F., Khan, F.S.: A numerical solution of a model for HIV infection \(CD4^+\)T cells. Int. J. Innovat. Sci. Res. 16(1), 79–85 (2015)

    Google Scholar 

  28. Yüzbaşı, Ş.: An exponential collocation method for the solutions of the HIV infection model of \(CD4^+\)T cells. Int. J. Biomath. 9(03), 1650 036 (2016)

    Article  Google Scholar 

  29. Namjoo, M., Zibaei, S.: A nonstandard finite difference scheme for solving fractional-order model of HIV-1 infection of \(CD4^+\)T cells. Iran. J. Math. Chem. 6(2), 169–184 (2015)

    MATH  Google Scholar 

  30. Chen, F., Liu, Q.Q.: Adomian decomposition method combined with Padé approximation and Laplace transform for solving a model of HIV infection of \(CD4^+\)T cells. Discrete Dynamics in Nature and Society (2015)

  31. Zurigat, M., Ababneh, M.: Application of the multi-step differential transform method to solve a Fractional human T-cell Lymphotropic virus I (HTLV-I) infection of \(CD4^+\)T cells. J. Math. Appl. 38, 171–180 (2015)

    MathSciNet  MATH  Google Scholar 

  32. Venkatesh, S., Balachandar, S.R., Ayyaswamy, S., Balasubramanian, K.: A new approach for solving a model for HIV infection of \(CD4^+T\) cells arising in mathematical chemistry using Wavelets. J. Math. Chem. 54(5), 1072–1082 (2016)

    Article  MathSciNet  Google Scholar 

  33. Parand, K., Hosseini, L.: Numerical approach of flow and mass transfer on nonlinear stretching sheet with chemically reactive species using Rational Jacobi Collocation method. Int. J. Numer. Methods Heat Fluid Flow 23(5), 772–789 (2013)

    Article  MathSciNet  Google Scholar 

  34. Doha, E.H., Bhrawy, A.H., Hafez, R.M., Van Gorder, R.A.: Jacobi Rational-Gauss Collocation method for Lane-Emden equations of Astrophysical significance. Modelling and Control, Nonlinear Analysis (2014)

    Article  MathSciNet  Google Scholar 

  35. Hafez, R.M., Ezz-Eldien, S.S., Bhrawy, A.H., Ahmed, E.A., Baleanu, D.: A Jacobi Gauss-Lobatto and Gauss-Radau Collocation algorithm for solving Fractional Fokker-Planck equations. Nonlinear Dyn. 82(3), 1431–1440 (2015)

    Article  MathSciNet  Google Scholar 

  36. Bhrawy, A., Alofi, A.: A Jacobi-Gauss Collocation method for solving nonlinear Lane-Emden type equations. Commun. Nonlinear Sci. Numer. Simul. 17(1), 62–70 (2012)

    Article  MathSciNet  Google Scholar 

  37. Shen, J., Tang, T., Wang, L.L.: Spectral methods: Algorithms, Analysis and Applications 2011

    Chapter  Google Scholar 

  38. Szeg, G.: 5, Orthogonal polynomials. American Mathematical Society (1975)

  39. Arafa, A., Rida, S., Khalil, M.: Fractional modeling dynamics of HIV and \(CD4^+\)T cells during primary infection. Nonlinear Biomedical Physics 6(1) (2012)

    Article  Google Scholar 

  40. Parand, K., Rezaei, A., Taghavi, A.: Lagrangian method for solving Lane-Emden type equation arising in Astrophysics on semi-infinite domains. Acta Astronautica 67(7), 673–680 (2010)

    Article  Google Scholar 

  41. Doha, E., Baleanu, D., Bhrawy, A., Hafez, R.: A Pseudospectral algorithm for solving multipantograph delay systems on a semi-infinite interval using Legendre Rational functions. Abstract and Applied Analysis (2014)

  42. Marzban, H., Hoseini, S., Razzaghi, M.: Solution of Volterra’s population model via Block-Pulse functions and Lagrange-interpolating polynomials. Math. Methods Appl. Sci. 32(2), 127–134 (2009)

    Article  MathSciNet  Google Scholar 

  43. Mandelzweig, V., Tabakin, F.: Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs. Comput. Phys. Commun. 141(2), 268–281 (2001)

    Article  MathSciNet  Google Scholar 

  44. Bellman, R.E., Kalaba, R.E.: Quasilinearization and nonlinear boundary-value problems (1965)

  45. Mandelzweig, V.B., Tabakin, F.: Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs. Comput. Phys. Comm. 141, 268–281 (2001)

    Article  MathSciNet  Google Scholar 

  46. Khan, R.A.: The generalized quasilinearization technique for a second order differential equation with separated boundary conditions. Math. Comput. Model. 43(7), 727–742 (2006)

    Article  MathSciNet  Google Scholar 

  47. Parand, K., Yousefi, H., Delkhosh, M., Ghaderi, A.: A novel numerical technique to obtain an accurate solution to the Thomas-Fermi equation. Eur. Phys. J. Plus 131(7), 1–16 (2016)

    Article  Google Scholar 

  48. El-Gebeily, M., ORegan, D.: A generalized Quasilinearization method for second-order nonlinear differential equations with nonlinear boundary conditions. J. Comput. Appl. Math. 192(2), 270–281 (2006)

    Article  MathSciNet  Google Scholar 

  49. Vatsala, A., Wang, L.: The generalized Quasilinearization method for reaction diffusion equations on an unbounded domain. J. Math. Anal. Appl. 237(2), 644–656 (1999)

    Article  MathSciNet  Google Scholar 

  50. El-Gebeily, M., ORegan, D.: A Quasilinearization method for a class of second order singular nonlinear differential equations with nonlinear boundary conditions. Nonlinear Anal. Real World Appl. 8(1), 174–186 (2007)

    Article  MathSciNet  Google Scholar 

  51. Atangana, A., Alabaraoye, E.: Solving a system of Fractional partial differential equations arising in the model of HIV infection of \(CD4^+\)T cells and attractor one-dimensional Keller-Segel equations. Adv. Differ. Equ. 1, 1–14 (2013)

    MATH  Google Scholar 

  52. Mandelzweig, V.B., Tabakin, : Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs. Comput. Phys. Commun. 141(2):268–281 (2001)

    Article  MathSciNet  Google Scholar 

  53. Bhrawy, A.H., Alofi, A.S.: A Jacobi-Gauss collocation method for solving nonlinear Lane-Emden type equations. Commun. Nonlinear Sci. Numer. Simul. 17(1), 62–70 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Parand.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest.

Appendix

Appendix

In this Appendix we are going to apply QLM to equations in (1). In first equation in (1), we are coping with

$$\begin{aligned} \frac{dT}{dx}= & {} c_1-c_2T(x)+c_3T(x)\left( 1-\frac{T(x)+I(x)}{T_{Max}}\right) -c_4V(x)T(x),\\ \frac{dT}{dx}= & {} c_1-c_2T(x)+c_3T(x) -c_3\frac{T^2(x)}{T_{Max}}-c_3\frac{T(x)I(x)}{T_{Max}}-c_4V(x)T(x). \end{aligned}$$

Applying the QLM, we will have

$$\begin{aligned} \frac{dT_{i+1}(x)}{dx}= & {} \underbrace{c_1-c_2T_{i}(x)+c_3T_{i}(x) -c_3(x)\frac{T_{i}^2(x)}{T_{Max}}-c_3\frac{T_{i}(x)I_{i}(x)}{T_{Max}}-c_4V_{i}(x)T_{i}(x)}_{A_1(x)}\nonumber \\&+\big (T_{i+1(x)}-T_{i}(x)\big ).\left( -c_2+c_3-c_3\frac{2T_{i}(x)}{T_{Max}}-c_3\frac{I_{i}(x)}{T_{Max}}-c_4V_{i}(x)\right) .\nonumber \\ \end{aligned}$$
(25)

All the i-th step forms are known. So then we can show these forms as

$$\begin{aligned} \frac{dT_{i+1}(x)}{dx}= & {} A_1(x)+\big (T_{i+1}(x)-T_{i}(x)\big ).\left( -c_2+c_3-c3\frac{2T_{i}(x)}{T_{Max}}-c_3\frac{I_{i}(x)}{T_{Max}}-c_4V_{i}(x)\right) ,\\ \frac{dT_{i+1}(x)}{dx}= & {} A_1(x)+T_{i+1}(x)\left( -c_2+c_3-c_3\frac{2T_{i}(x)}{T_{Max}}-c_3\frac{I_{i}(x)}{T_{Max}}-c_4V_{i}(x)\right) \\&\quad -\underbrace{T_{i}(x).\left( -c_2+c_3-c3\frac{2T_{i}(x)}{T_{Max}}-c_3\frac{I_{i}(x)}{T_{Max}}-c_4V_{i}(x)\right) }_{A_2(x)},\\ \frac{dT_{i+1}(x)}{dx}= & {} A_1(x)+T_{i+1}(x)\underbrace{\left( -c_2+c_3-c3\frac{2T_{i}(x)}{T_{Max}}-c_3\frac{I_{i}(x)}{T_{Max}}-c_4V_{i}(x)\right) }_{A_3(x)}+A_2(x),\\ \frac{dT_{i+1}(x)}{dx}= & {} A_3(x)T_{i+1}(x)+\underbrace{A_1(x)+A_2(x)}_{A_4(x)},\\ \frac{dT_{i+1}(x)}{dx}= & {} A_3(x)T_{i+1}(x)+A_4(x). \end{aligned}$$

Thus, at the end

$$\begin{aligned} A_3T_{i+1}(x)+A_4(x)-\frac{dT_{i+1}(x)}{dx}=0. \end{aligned}$$
(26)

Similarly, for the second and third equations in (1), we do the same

$$\begin{aligned} \frac{dI(x)}{dx}= & {} c_4V(x)T(x)-c_5I(x), \nonumber \\ \frac{dI_{i+1}(x)}{dx}= & {} \underbrace{ c_4V_{i}(x)T_{i}(x)-c_5I_{i}(x)}_{B_1(x)}+\big (I_{i+1}(x)-I_{i}(x)\big )(-c5), \nonumber \\ \frac{dI_{i+1}(x)}{dx}= & {} B_1(x)+(I_{i+1}(x)-I_{i}(x))(-c5), \nonumber \\ \frac{dI_{i+1}(x)}{dx}= & {} B_1(x)+I_{i+1}(x)(-c5)-\underbrace{I_{i}(x)(-c5)}_{B_2(x)}, \nonumber \\ \frac{dI_{i+1}(x)}{dx}= & {} B_1(x)+I_{i+1}(x)\underbrace{(-c5)}_{B_3(x)}+B_2(x), \nonumber \\ \frac{dI_{i+1}(x)}{dx}= & {} \underbrace{B_1(x)+B_2(x)}_{B_4(x)}+B_3(x)I_{i+1}(x), \nonumber \\ \frac{dI_{i+1}(x)}{dx}= & {} B_3(x)I_{i+1}(x)+B_4(x). \end{aligned}$$
$$\begin{aligned} B_3(x)I_{i+1}(x)+B_4(x)-\frac{dI_{i+1}(x)}{dx}=0. \end{aligned}$$
(27)

For the third equation,

$$\begin{aligned} \frac{dV}{dx}= & {} Nc_5I(x)-c_6V(x), \\ \frac{dV_{i+1}(x)}{dx}= & {} \underbrace{Nc_5I_{i}(x)-c_6V_{i}(x)}_{C_1(x)}+(V_{i+1}(x)-V_{i}(x))(-c_6), \\ \frac{dV_{i+1}(x)}{dx}= & {} C_1(x)+(V_{i+1}(x)-V_{i}(x))(-c_6), \\ \frac{dV_{i+1}(x)}{dx}= & {} C_1(x)+V_{i+1}(x)(-c_6)-\underbrace{V_{i}(x)(-c_6)}_{C_2(x)}, \\ \frac{dV_{i+1}(x)}{dx}= & {} C_1(x)+V_{i+1}(x)\underbrace{(-c_6)}_{C_3(x)}+C_2(x), \\ \frac{dV_{i+1}(x)}{dx}= & {} \underbrace{C_1(x)+C_2(x)}_{C_4(x)}+C_3(x)V_{i+1}(x), \\ \frac{dV_{i+1}(x)}{dx}= & {} C_3(x)V_{i+1}(x)+C_4(x). \end{aligned}$$
$$\begin{aligned} C_3(x)V_{i+1}(x)+C_4(x)-\frac{dV_{i+1}(x)}{dx}=0. \end{aligned}$$
(28)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parand, K., Latifi, S. & Moayeri, M.M. Shifted Lagrangian Jacobi collocation scheme for numerical solution of a model of HIV infection. SeMA 75, 379–398 (2018). https://doi.org/10.1007/s40324-017-0138-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40324-017-0138-9

Keywords

Mathematics Subject Classification

Navigation