Skip to main content
Log in

Unified local convergence for a certain family of methods in Banach space

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

We provide a local convergence analysis for a unified family of methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. These methods have fourth-order convergence, when specialized in the finite dimensional Euclidean space. In contrast to the earlier studies using hypotheses up to the fifth Fréchet-derivative, we only use hypotheses on the first Fréchet-derivative and Lipschitz constants. The applicability of these methods is expanded this way. Numerical examples are presented to show that we can solve equations in cases not possible with earlier approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbasbandy, S.: Extended Newton’s method for a system of nonlinear equations by modified Adomian decomposition method. Appl. Math. Comput. 170, 648–656 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Adomian, G.: Solving Frontier problem of physics: The decomposition method. Kluwer Academic Publishers, Dordrecht (1994)

    Book  MATH  Google Scholar 

  3. Amat, S., Busquier, S., Guttiérrez, J.M.: Geometric constructions of iterative functions to solve nonlinear equations. J. Comput. Appl. Math. 157, 197–205 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Amat, S., Busquier, S., Plaza, S.: Dynamics of the King’s and Jarratt iterations. Aequationes. Math. 69, 212–213 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Amat, S., Hernández, M.A., Romero, N.: A modified Chebyshev’s iterative method with at least sixth order of convergence. Appl. Math. Comput. 206(1), 164–174 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Argyros, I.K.: Convergence and Applications of Newton-type Iterations. Springer (2008)

  7. Argyros, I.K., Chen, D., Quian, Q.: The Jarratt method in Banach space setting. J. Comput. Appl. Math. 51, 103–106 (1994)

  8. Argyros, I.K., Hilout, S.: Computational Methods in Nonlinear Analysis. World Scientific Publ. Comp, NJ (2013)

    Book  MATH  Google Scholar 

  9. Argyros, I.K., Magreñán, A.A.: Ball convergence theorems and the convergence planes of an iterative method for nonlinear equations. SeMA 71(1), 39–55 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Argyros, I.K., George, S.: Local convergence of some high-order Newton-like method with frozen derivatives. SeMA. doi: 10.1007/s40324-015-00398-8

  11. Babolian, E., Biazar, J., Vahidi, A.R.: Solution of a system of nonlinear equations by Adomian decomposition method. Appl. Math. Comput. 150, 847–854 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Cordero, A., Torregrosa, J.R.: Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Cordero, A., Torregrosa, J.R.: Variants of Newton’s method for functions of several variables. Appl. Math. Comput. 183, 199–208 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Cordero, A., Torregrosa, J.R., Vassileva, M.P.: Increasing the order of convergence of iterative schemes for solving nonlinear systems. J. Comput. Appl. Math. 252, 86–94 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Darvishi, M.T., Barati, A.: A third-order Newton-type method to solve systems of nonlinear equations. Appl. Math. Comput. 187, 630–635 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Darvishi, M.T., Barati, A.: Super cubic iterative methods to solve systems of nonlinear equations. Appl. Math. Comput. 188, 1678–1685 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Ezquerro, J.A., Hernández, M.A.: New iterations of R-order four with reduced computational cost. BIT Numer Math. 49, 325–342 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ezquerro, J.A., Hernández, M.A.: A uniparametric halley type iteration with free second derivative. Int. J. Pure Appl. Math. 6(1), 99–110 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Golbabai, A., Javidi, M.: A new family of iterative methods for solving system of nonlinear algebraic equations. Appl. Math. Comput. 190, 1717–1722 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Gutiérrez, J.M., Hernández, M.A.: Recurrence relations for the super-Halley method. Comput. Math. Appl. 36, 1–8 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kou, J.: A third-order modification of Newton method for systems of nonlinear equations. Appl. Math. Comput. 191, 117–121 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Montazeri, H., Soleymani, F., Shateyi, S., Motsa, S.S.: On a new method for computing the numerical solution of systems of nonlinear equations, J. Appl. Math. Article ID 751975 (2012)

  23. Noor, M.A., Waseem, M.: Some iterative methods for solving a system of nonlinear equations. Comput. Math. Appl. 57, 101–106 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Petković, M.S., Neta, B., Petković, L.D., Dzunić, J.: Multipoint Methods for Solving Nonlinear Equations. Elsevier, Amsterdam (2013)

    MATH  Google Scholar 

  25. Potra, F.A., Ptak, V.: Nondiscrete Induction and Iterative Processes. Res. Notes. Math. 103, Pitman, Boston (1984)

  26. Qifang, Su.: A unified model for solving a system of nonlinear equations. Appl. Math. Comput. (to appear)

  27. Rheinboldt, W.C.: An adaptive continuation process for solving systems of nonlinear equations. Mathematical models and numerical methods (A.N.Tikhonov et al. eds.) 3(19), 129–142. Banach Center Publications, Warsaw, Poland (1977)

  28. Sharma, J.R., Guha, R.K., Sharma, R.: An efficient fourth-order weighted-Newton method for systems of nonlinear equations. Numer. Algor. 62, 307–323 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice-Hall, NJ (1964)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munish Kansal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argyros, I.K., Kansal, M. Unified local convergence for a certain family of methods in Banach space. SeMA 73, 325–334 (2016). https://doi.org/10.1007/s40324-016-0071-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40324-016-0071-3

Keywords

Mathematics Subject Classification

Navigation