Skip to main content
Log in

A combinatorial description of the monodromy of log curves

  • Published:
Annales mathématiques du Québec Aims and scope Submit manuscript

Abstract

Let \(k\) be an algebraically closed field of characteristic \(0\). For a log curve \(X/k^{\times }\) over the standard log point (Kato in Int J Math 11(2):215–232, 2000), we define (algebraically) a combinatorial monodromy operator on its log-de Rham cohomology group. The invariant part of this action has a cohomological description, it is the Du Bois cohomology of \(X\) (Du Bois in Bull Soc Math Fr 109(1):41–81, 1981). This can be seen as an analogue of the invariant cycles exact sequence for a semistable family (as in the complex, étale and \(p\)-adic settings). In the specific case in which \(k={\mathbb {C}}\) and \(X\) is the central fiber of a semistable degeneration over the complex disc, our construction recovers the topological monodromy and the classical local invariant cycles theorem. In particular, our description allows an explicit computation of the monodromy operator in this setting.

Résumé

Soit \(k\) un corps algébriquement clos de caractéristique \(0\). Pour une courbe logarithmique \(X/k^{\times }\) sur le point logarithmique standard ([16]), on définit (algébriquement) un opérateur de monodromie combinatoire sur sa cohomologie de de Rham logarithmique. La partie invariante de cette action possède une description cohomologique, elle est la cohomologie de Du Bois de \(X\) ([9]). Cela peut être vu comme un analogue de la suite exacte des cycles invariants pour une famille semi-stable (comme dans les cadres complexes, étale et \(p\)-adique). Dans le cas spécifique ou \(k={\mathbb {C}}\) et \(X\) est la fibre centrale d’une dégénération semi-stable sur le disque complexe, notre construction retrouve la monodromie topologique et le théorème des cycles invariants classique. En particulier, dans ce cadre, notre description fournis un calcul explicite de l’opérateur de monodromie.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Artin, M., Grothendieck, A., Verdier, J.-L.: Théorie des topos et cohomologie étale des schémas: Tome 2. Lecture Notes in Mathematics, vol. 270. Springer, Berlin (1972)

    MATH  Google Scholar 

  2. Beĭlinson, A.A., Bernstein, J., Deligne, P.: Faisceaux pervers. Analysis and Topology on Singular Spaces, I (Luminy, 1981), of Astérisque, pp. 5–171. Soc. Math. France, Paris (1982)

    Google Scholar 

  3. Chiarellotto, B.: Rigid cohomology and invariant cycles for a semistable log scheme. Duke Math. J. 97(1), 155–169 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chiarellotto, B., Coleman, R., Di Proietto, V., Iovita, A.: On a \(p\)-adic invariant cycles theorem. J. Reine Angew. Math. 711, 55–74 (2016)

    Article  MathSciNet  Google Scholar 

  5. Coleman, R., Iovita, A.: The Frobenius and monodromy operators for curves and abelian varieties. Duke Math. J. 97(1), 171–215 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Coleman, R., Iovita, A.: Hidden structures on semistable curves. Astérisque 331, 179–254 (2010)

    MathSciNet  MATH  Google Scholar 

  7. de Cataldo, M.A.A., Migliorini, L.: The decomposition theorem, perverse sheaves and the topology of algebraic maps. Bull. Am. Math. Soc. (N.S.) 46(4), 535–633 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deligne, P.: Équations différentielles à points singuliers réguliers. Lecture Notes in Mathematics, vol. 163. Springer, Berlin (1970)

    Book  MATH  Google Scholar 

  9. Du Bois, P.: Complexe de de Rham filtré d’une variété singulière. Bull. Soc. Math. Fr. 109(1), 41–81 (1981)

    Article  MATH  Google Scholar 

  10. Grothendieck, A.: Éléments de géométrie algébrique. I. Le langage des schémas. Inst. Hautes Études Sci. Publ. Math. 4, 228 (1960)

    Article  MATH  Google Scholar 

  11. Grothendieck, A.: Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents I Inst. Hautes Études Sci. Publ. Math. 11, 167 (1961)

    Google Scholar 

  12. Hartshorne, R.: Ample Subvarieties of Algebraic Varieties. Lecture Notes in Mathematics, vol. 156. Springer, Berlin (1970)

    Book  MATH  Google Scholar 

  13. Hyodo, O., Kato, K.: Semi-stable reduction and crystalline cohomology with logarithmic poles. Astérisque 223, 221–268 (1994). Périodes \(p\)-adiques (Bures-sur-Yvette, 1988)

    MathSciNet  MATH  Google Scholar 

  14. Illusie, L.: Autour du théorème de monodromie locale. Astérisque 223, 9–57 (1994). Périodes \(p\)-adiques (Bures-sur-Yvette, 1988)

    MATH  Google Scholar 

  15. Illusie, L.: Logarithmic spaces (according to K. Kato). In: Barsotti Symposium in Algebraic Geometry (Abano Terme, 1991), Perspect. Math., vol. 15, pp. 183–203. Academic Press, San Diego (1994)

  16. Kato, F.: Log smooth deformation and moduli of log smooth curves. Int. J. Math. 11(2), 215–232 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kato, K.: Logarithmic structures of Fontaine-Illusie. Algebraic Analysis, Geometry, and Number Theory (Baltimore, MD, 1988), pp. 191–224. Johns Hopkins Univ. Press, Baltimore (1989)

    Google Scholar 

  18. Mumford, D.: Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5. Published for the Tata Institute of Fundamental Research, Bombay; by Hindustan Book Agency, New Delhi, 2008. With appendices by C. P. Ramanujam and Yuri Manin, Corrected reprint of the second (1974) edition

  19. Peters, C.A.M., Steenbrink, J.H.M.: Mixed Hodge structures, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 52. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Berlin (2008)

  20. Serre, J.-P.: Algebraic Groups and Class Fields, Graduate Texts in Mathematics, vol. 117. Springer, New York (1988). Translated from the French

  21. Steenbrink, J.: Limits of Hodge structures. Invent. Math. 31(3), 229–257 (1975/1976)

  22. Weibel, C.A.: An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, vol. 38. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

Download references

Acknowledgements

Pietro Gatti would like to thank Nicola Mazzari for the helpful discussions concerning this research. Bruno Chiarellotto is supported by the grant MIUR-PRIN 2017 “Geometric, algebraic and analytic methods in arithmetic”. Pietro Gatti was partially funded by Nero Budur’s research project G0B2115N from the Research Foundation of Flanders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Gatti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiarellotto, B., Gatti, P. A combinatorial description of the monodromy of log curves. Ann. Math. Québec 45, 161–184 (2021). https://doi.org/10.1007/s40316-020-00133-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40316-020-00133-7

Keywords

Mathematics Subject Classification

Navigation