Skip to main content
Log in

p-adic families of modular forms and p-adic Abel-Jacobi maps

  • Published:
Annales mathématiques du Québec Aims and scope Submit manuscript

Abstract

We show that p-adic families of modular forms give rise to certain p-adic Abel-Jacobi maps at their p-new specializations. We introduce the concept of differentiation of distributions, using it to give a new description of the Coleman-Teitelbaum cocycle that arises in the context of the \(\mathcal {L}\)-invariant.

Résumé

Nous associons certaines applications p-adiques d’Abel-Jacobi aux familles analytiques de formes modulaires à ses poids nouveaux en p. Nous introduisons le concept de la dérivée d’une distribution. Utilisant ce concept, nous donnons une nouvelle perspective sur le cocycle de Coleman-Teitelbaum dans le contexte de l’invariant \(\mathcal {L}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Indeed let K be the finite kernel, so that we may write \(\mathbf {q} _{\Gamma _{N^{+},N^{-}}}=K\times \mathbf {q}_{\Gamma _{N^{+},N^{-}}}^{\prime } \) with \(\mathbf {q}_{\Gamma _{N^{+},N^{-}}}^{\prime }\subset \mathbf {q} _{\Gamma _{N^{+},N^{-}}}\) such that \({{\mathrm{ord}}}\) is injective on \(\mathbf {q} _{\Gamma _{N^{+},N^{-}}}^{\prime }\) and such that the image is a lattice. Then, according to [18, §6.4], \(\frac{\mathbf {T}_{\Gamma _{N^{+},N^{-}}}}{\mathbf {q}_{\Gamma _{N^{+},N^{-}}}^{\prime }}\) is an analytic torus. But since K is finite, \(\frac{\mathbf {T}_{\Gamma _{N^{+},N^{-}}}}{\mathbf {q}_{\Gamma _{N^{+},N^{-}}}}=( \frac{\mathbf {T} _{\Gamma _{N^{+},N^{-}}}}{\mathbf {q}_{\Gamma _{N^{+},N^{-}}}^{\prime }}) ^{K}\) exists (again by [18, §6.4]) and it is also an analytic torus.

  2. Indeed, we have \(I_{\ell }^{0}\circ \iota =\ell \circ I_{\times }^{0}\) for \( \ell ={{\mathrm{ord}}}\) or \(\log _{0}\) by the analogue of (32) It follows that the \(\mathcal {L}\)-invariant of [28] considered in [35] is the \(\mathcal {L}\)-invariant of the monodromy module attached to \(J_{\Gamma _{N^{+},N^{-}}}\), i.e. the \(\mathcal {L}\) -invariant of \(J_{\Gamma _{N^{+},N^{-}}}\). Hence, the main result of [35] gives the required lift of the main result of [16].

  3. We write \(V\otimes _{\iota }W\) (resp. \(V\otimes W\)) to denote \(V\otimes _{K}W\) with the inductive (resp. projective) tensor topology. Also, a morphism \(V\rightarrow W\) is a continuous, K-linear if V and W are locally convex spaces. Completion means Hausdorff completion.

  4. Since the multiplication law \(\mathcal {D}\left( T\right) \times \mathcal {D} \left( T\right) \rightarrow \mathcal {D}\left( T\right) \) is only separately continuous, \(\mathcal {D}\left( T\right) \) is not a locally convex algebra. When T is compact the multiplication law is continuous and \({{\mathrm{Hom}}}_{\mathcal { L}}\left( \mathcal {D}\left( T\right) ,\mathcal {O}\right) \) is the space of morphisms of locally convex algebras.

  5. We remark that [40, Theorem 2.2] can be refined to a bicontinuous isomorphism and extended to the case where the manifold is strictly paracompact.

  6. Suppose that \(\left( F_{i}\right) \rightarrow F\) is a net in \(\mathcal {A}_{ \mathbf {k}}\left( X\right) \) converging to \(F\in \mathcal {A}\left( X, \mathcal {O}\right) \). If \(t\in T\) let \(t:X\rightarrow X\) be the locally analytic map given by left multiplication by t, so that \(t^{*}\left( F_{i}\right) \rightarrow t^{*}\left( F\right) \) Since the multiplication in \(\mathcal {O}\) is separately continuous, \(G\mapsto t^{ \mathbf {k}_{2}}G\) is continuous and \(t^{\mathbf {k}_{2}}F_{i}\rightarrow t^{ \mathbf {k}_{2}}F\). Since \(t^{*}\left( F_{i}\right) =t^{\mathbf {k} _{2}}F_{i}\) we deduce that \(t^{*}\left( F\right) =t^{\mathbf {k}_{2}}F\) for every \(t\in T\), meaning that \(F\in \mathcal {A}_{\mathbf {k}}\left( X\right) \).

  7. According to [32, PartII, Ch.III §12 Theorem1] there exists at most one p-adic manifold structure on \(\overline{X}\) making \(\pi :X\rightarrow \overline{X}\) a topological quotient in such a way that \(\pi \) is a submersion. See [32, PartII, Ch.III §12 Theorem 2] for natural conditions granting the existence of such a quotient.

  8. We have indeed.

References

  1. Andreatta, F., Iovita, A., Stevens, G.: Overconvergent modular sheaves and modular forms for \(GL_{2/F}\), Israel J. Math. 201, 299–359

  2. Andreatta, F., Iovita, A., Stevens, G.: Overconvergent Eichler-Shimura isomorphisms. To appear in J. Inst. Math. Jussieu, available on CJO2014. doi:10.1017/S1474748013000364

  3. Ash, A., Stevens, G.: \(p\)-adic deformation of arithmetic cohomology, draft dated 29.09.2008

  4. Bertolini, M., Darmon, H.: Hida families and rational points on elliptic curves. Invent. Math. 168(2), 371–431 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bertolini, M., Darmon, H., Iovita, A.: Families of automorphic forms on definite quaternion algebras and Teitelbaum’s conjecture. Astérisque 331, 29–64 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Bosch, S., Lutkebohmert, W., Raynaud, M.: Néron models, Springer-Verlag (1990)

  7. Bourbaki, N.: Groupes et Algébres de Lie, Hermann, Paris (1972)

  8. Brown, K.S.: Cohomology of groups, Springer (1980)

  9. Buzzard, K.: On \(p\)-adic families of automorphic forms. In: Modular Curves and Abelian Varieties, Progr. Math., vol. 224, Birkhäuser Verlag, Basel, pp 23–44 (2004)

  10. Coleman, R.F.: \(p\)-adic Banach spaces and families of modular forms. Invent. Math. 127(3), 417–479

  11. Coleman, R.F., Mazur, B.: The eigencurve. In: Galois representations in arithmetic algebraic geometry (Durham, 1996), London Math. Soc. Lecture Note Ser. 254, Cambridge Univ. Press, pp 1–113

  12. Darmon, H.: Integration on \({{\cal H}_{p}\times {\cal H}}\) and arithmetic applications. Ann. of Math. 154(2), 589–639 (2001)

  13. Darmon, H.: Rational points on modular elliptic curves, CBMS Regional Conference Series in Mathematics, 101. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (2004)

  14. Dasgupta, S.: Gross-Stark units, Stark-Heegner points, and class fields of real quadratic fields, PhD thesis

  15. Dasgupta, S.: Stark-Heegner points on modular Jacobians. Ann. Scient. Ec. Norm. Sup. 38, 427–469 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Dasgupta, S., Greenberg, M.: \({\cal L}\)-invariants and Shimura curves, to appear in Algebra and Number Theory

  17. Dasgupta, S., Teitelbaum, J.: The \(p\)-adic upper half plane. In: Savitt D, Thakur, D (ed) \(p\)-adic Geometry, Lectures from the 2007 Arizona Winter School. University Lecture Series 45, Amer. Math. Soc., Providence, RI (2008)

  18. Fresnel, J., van der Put, M.: Rigid analytic geometry and its applications, Birkhäuser Boston (2004)

  19. Greenberg, M.: Stark-Heegner points and the cohomology of quaternionic Shimura varieties. Duke Math. J. 147(3), 541–575 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Greenberg, M., Seveso, M.A.: \(p\)-adic families of cohomological modular forms for indefinite quaternion algebras and the Jacquet-Langlands correspondence. Canad. J. Math (2015). doi:10.4153/CJM-2015-062-x

    Google Scholar 

  21. Greenberg, M., Seveso, M.A., Shahabi, S.: Modular \(p\) -adic \(L\)-functions attached to real quadratic fields and arithmetic applications. J. Reine Angew. Math (2014). doi:10.1515/crelle-2014-0088

  22. Greenberg, R., Stevens, G.: \(p\)-adic \(L\)-functions and \(p\) -adic periods of modular forms. Invent. Math. 111, 407–447 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hida, H.: Galois representations into \(GL_{\mathbf{2} }\left( \mathbb{Z}_{p}\left[\left[X\right] \right] \right) \) attached to ordinary cusp forms. Invent. Math. 85, 545–613 (1986)

    Article  MathSciNet  Google Scholar 

  24. Hida, H.: Iwasawa modules attached to congruences of cusp forms. Ann. Scient. Ec. Norm. Sup. 19, 231–273 (1986)

    MathSciNet  MATH  Google Scholar 

  25. Longo, M., Vigni, S.: The rationality of quaternionic Darmon points over genus fields of real quadratic fields. IMRN 2014, 3632–3691 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Longo, M., Rotger, V., Vigni, S.: On rigid analytic uniformizations of Jacobians of Shimura curves. Amer. J. Math. 135, 1197–1246 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mazur, B., Tate, J., Teitelbaum, J.: On \(p\)-adic analogues of the conjecture of Birch and Swinnerton-Dyer. Invent. Math. 84, 1–48 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rotger, V., Seveso, M.A.: \(L\)-invariants and Darmon cycles attached to modular forms. J. Eur. Math. Soc. 14(6), 1955–1999 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Serre, J.P.: Formes modulaires et fonctions zeta \(p\) -adiques. In: Modular functions of one variable III, Lecture Notes in Mathematics 350, Springer, pp. 191–268

  30. Serre, J.-P.: Local fields. Springer (1979)

  31. Serre, J.-P.: Trees. Springer (1980)

  32. Serre, J.P.: Lie algebras and Lie groups. Springer-Verlag (1964)

  33. Seveso, M.A.: \(p\)-adic \(L\)-functions and the rationality of Darmon cycles. Canad. J. Math. 64(5), 1122–1181 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Seveso, M.A.: Heegner cycles and derivatives of p-adic L-functions. J. Reine Angew. Math. 686, 111–148 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Seveso, M.A.: The Teitelbaum conjecture in the indefinite setting. Amer. J. Math. 135(6), 1525–1557 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Papikian, M.: Rigid-analytic geometry and the uniformization of abelian varieties. In: Vakil, R., (ed.) Snowbird lectures in algebraic geometry, Contemp. Math. 388, AMS Providence, pp. 145–160 (2005)

  37. de Shalit, E.: Eichler cohomology and periods of modular forms on \(p\)-adic Schottky groups. J. Reine Angew. Math. 400, 3–31 (1989)

    MathSciNet  MATH  Google Scholar 

  38. Schneider, P.: Nonarchimedean Functional Analysis. Springer Monographs in Mathematics. Springer-Verlag, Berlin (2002)

    Book  Google Scholar 

  39. Schneider, P.: \(p\)-adic analysis and Lie groups, available at http://wwwmath.uni-muenster.de/u/pschnei/publ/lectnotes/p-adic-analysis

  40. Schneider, P., Teitelbaum, J.: Locally analytic distributions and \(p\)-adic representation theory, with applications to \(\mathbf{GL}_{2}\). J. Amer. Math. Soc. 15, 443–468 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  41. Schneider, P., Teitelbaum, J.: Continuous and locally analytic representation theory, available at http://www.cms.zju.edu.cn/UploadFiles/AttachFiles/20048416190427 (2004)

  42. Stevens, G.: Rigid analytic modular symbols. Preprint dated April 21, 1994

  43. Stevens, G.: Coleman’s \({\cal L}\)-invariant and families of modular forms. Asterisque 331, 1–12 (2010)

  44. Teitelbaum, J.: Values of \(p\)-adic \(L\) -functions and a \(p\)-adic Poisson kernel. Invent. Math. 101, 395–410 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Adamo Seveso.

Additional information

MG’s research is supported by NSERC of Canada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greenberg, M., Seveso, M.A. p-adic families of modular forms and p-adic Abel-Jacobi maps. Ann. Math. Québec 40, 397–434 (2016). https://doi.org/10.1007/s40316-016-0060-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40316-016-0060-z

Keywords

Navigation