Skip to main content
Log in

Convergence Rates of Derivatives of a Family of Barycentric Rational Hermite Interpolants for Well-Spaced Points

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

Floater–Hormann rational interpolants and their derivatives converge as \(O(h_{j}^{d+1-k})\) for any set of well-spaced points and any \(0\le k\le d\) as the local mesh size \(h_{j}\) converges to zero. In this paper, we extend these results to the Hermite case and investigate the approximation behavior of the k-th derivative of a recently proposed family of barycentric rational Hermite interpolants for any \(k\ge 0\) and any set of well-spaced points. In addition, if the order m of the interpolated derivatives is even, the k-th derivative of the interpolants converges as \(O(h_{j}^{(m+1)(d+1)-k});\) and if the order m of the interpolated derivatives is odd, the k-th derivative of the interpolants converges as \(O\big (h_{j}^{(m+1)(d+1)-1-2k}\big ).\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Schneider, C., Werner, W.: Hermite interpolation: the barycentric approach. Computing 46, 35–41 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cirillo, E., Hormann, K.: An iterative approach to barycentric rational Hermite interpolation. Numer. Math. 140(4), 939–962 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cirillo, E., Hormann, K.: On the Lebesgue constant of barycentric rational Hermite interpolants at equidistant nodes. J. Comput. Appl. Math. 349, 292–301 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cirillo, E., Hormann, K., Sidon, J.: Convergence rates of a Hermite generalization of Floater–Hormann interpolants. J. Comput. Appl. Math. 371, 1–9 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Jing, K., Kang, N., Zhu, G.Q.: Convergence rates of a family of barycentric osculatory rational interpolation. J. Appl. Math. Comput. 53(1), 169–181 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jing, K., Kang, N.: Convergence rates of a family of barycentric rational Hermite interpolants and their derivatives. J. Comput. Appl. Math. 395, 113569 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Atkinson, K.E.: An Introduction to Numerical Analysis, 1st edn. Wiley, New York (1989)

    MATH  Google Scholar 

  8. Klein, G., Berrut, J.-P.: Linear rational finite differences from derivatives of barycentric rational interpolants. SIAM J. Numer. Anal. 50, 643–656 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cirillo, E., Hormann, K., Sidon, J.: Convergence rates of derivatives of Floater–Hormann interpolants for well-spaced nodes. Appl. Numer. Math. 116, 108–118 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hoppe, R.: Theorie der independenten Darstellung der höhern Differentialquotienten. Johann Ambrosius Barth, Leipzig (1845)

    Google Scholar 

  11. Johnson, W.P.: The curious history of Faà di Bruno’s formula. Am. Math. Mon. 109, 217–234 (2002)

    MATH  Google Scholar 

  12. Floater, M.S., Hormann, K.: Barycentric rational interpolation with no poles and high rates of approximation. Numer. Math. 107, 315–331 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bos, L., De Marchi, S., Hormann, K., Sidon, J.: Bounding the Lebesgue constant for Berrut’s rational interpolant at general nodes. J. Approx. Theory 169, 7–22 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Berrut, J.-P., Floater, M.S., Klein, G.: Convergence rates of derivatives of a family of barycentric rational interpolants. Appl. Numer. Math. 61(9), 989–1000 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: amultiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13–15 (2007)

  16. Ryaben’kii, V.S., Tsynkov, S.V.: A Theoretical Introduction to Numerical Analysis. Chapman & Hall/CRC, Boca Raton (2006)

    Book  MATH  Google Scholar 

  17. Brutman, L.: Lebesgue functions for polynomial interpolation—a survey. Ann. Numer. Math. 4, 111–127 (1997)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Jing.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in this paper.

Additional information

Communicated by Lothar Reichel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ke Jing was supported by the National Natural Science Foundation of China under Grant 12001265 and the Science Foundation of Ministry of Education of China under Grant 18YJC790069.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, K. Convergence Rates of Derivatives of a Family of Barycentric Rational Hermite Interpolants for Well-Spaced Points. Comput. Methods Funct. Theory (2023). https://doi.org/10.1007/s40315-023-00501-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40315-023-00501-8

Keywords

Mathematics Subject Classification

Navigation