Skip to main content
Log in

A Discontinuous Galerkin Method for Three-Dimensional Poroelastic Wave Propagation: Forward and Adjoint Problems

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

We develop a numerical solver for three-dimensional poroelastic wave propagation, based on a high-order discontinuous Galerkin (DG) method, with the Biot poroelastic wave equation formulated as a first order conservative velocity/strain hyperbolic system. To derive an upwind numerical flux, we find an exact solution to the Riemann problem; we also consider attenuation mechanisms both in Biot’s low- and high-frequency regimes. Using either a low-storage explicit or implicit–explicit (IMEX) Runge–Kutta scheme, according to the stiffness of the problem, we study the convergence properties of the proposed DG scheme and verify its numerical accuracy. In the Biot low frequency case, the wave can be highly dissipative for small permeabilities; here, numerical errors associated with the dissipation terms appear to dominate those arising from discretisation of the main hyperbolic system. We then implement the adjoint method for this formulation of Biot’s equation. In contrast with the usual second order formulation of the Biot equation, we are not dealing with a self-adjoint system but, with an appropriate inner product, the adjoint may be identified with a non-conservative velocity/stress formulation of the Biot equation. We derive dual fluxes for the adjoint and present a simple but illuminating example of the application of the adjoint method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aki, K., Richards, P.G.: Quantitative Seismology. University Science Books, Sausalito (1980)

    Google Scholar 

  2. Bear, J.: Hydraulics of Groundwater. Dover, New York (1979)

    Google Scholar 

  3. Biot, M.A.: Theory of propagation of elastic waves in a fluid saturated porous solid. I. Low frequency range. J. Acoust. Soc. Am. 28(2), 168–178 (1956)

    Article  MathSciNet  Google Scholar 

  4. Biot, M.A.: Theory of propagation of elastic waves in a fluid saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am. 28(2), 179–191 (1956)

    Article  MathSciNet  Google Scholar 

  5. Biot, M.A.: Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 33(4), 1482–1498 (1962)

    Article  MathSciNet  Google Scholar 

  6. Biot, M.A., Willis, D.G.: The elastic coefficients of the theory of consolidation. J. Appl. Mech. 24, 594–601 (1957)

    Article  MathSciNet  Google Scholar 

  7. Carcione, J.M.: Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic and Porous Media. Elsevier, Amsterdam (2015)

    Google Scholar 

  8. Carcione, J.M., Quiroga-Goode, G.: Some aspects of the physics and numerical modeling of Biot compressional waves. J. Comput. Acoust. 3, 261–280 (1995)

    Article  Google Scholar 

  9. Carpenter, M.H., Kennedy, C.A.: Fourth-order 2N-storage Runge–Kutta schemes. Technical report, NASA-TM-109112 (1994)

  10. Cavaglieri, D., Bewley, T.: Low-storage implicit/explicit Runge–Kutta schemes for the simulation of stiff high-dimensional ODE systems. J. Comput. Phys. 286, 172–193 (2015)

    Article  MathSciNet  Google Scholar 

  11. Diaz, J., Ezziani, A.: Analytical solution for wave propagation in stratified poroelastic medium. Part II: the 3D case. eprint in arXiv, https://arxiv.org/abs/0807.4067 (2008). http://www.spice-rtn.org/library/software/Gar6more3D

  12. Dudley Ward, N.F., Eveson, S.P., Lähivaara, T.: A discontinuous Galerkin method for three-dimensional elastic and poroelastic wave propagation: forward and adjoint problems. eprint in arXiv, https://arxiv.org/abs/2001.09478 (2020)

  13. Dudley Ward, N.F., Lähivaara, T., Eveson, S.: A discontinuous Galerkin method for poroelastic wave propagation: the two-dimensional case. J. Comput. Phys. 350, 690–727 (2017)

    Article  MathSciNet  Google Scholar 

  14. Fichtner, A.: Full Seismic Waveform Modelling and Inversion. Springer, New York (2011)

    Book  Google Scholar 

  15. Fichtner, A., Bunge, H.-P., Igel, H.: The adjoint method in seismology I. Theory Phys. Earth Planet. Inter. 157, 86–104 (2006)

    Article  Google Scholar 

  16. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, New York (2007)

    MATH  Google Scholar 

  17. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

    Article  MathSciNet  Google Scholar 

  18. Kennedy, C.A., Carpenter, M.H.: Additive Runge–Kutta schemes for convection-diffusion-reaction equations. Appl. Numer. Math. 44(1–2), 139–181 (2003)

    Article  MathSciNet  Google Scholar 

  19. Lähivaara, T., Dudley Ward, N.F., Huttunen, T., Koponen, J., Kaipio, J.P.: Estimation of aquifer dimensions from passive seismic signals with approximate wave propagation models. Inverse Probl. 30(1), 015003 (2014)

    Article  MathSciNet  Google Scholar 

  20. Lähivaara, T., Dudley Ward, N.F., Huttunen, T., Rawlinson, Z., Kaipio, J.P.: Estimation of aquifer dimensions from passive seismic signals in the presence of material and source uncertainties. Geophys. J. Int. 200, 1662–1675 (2015)

    Article  Google Scholar 

  21. Lemoine, G.I., Yvonne Ou, M., LeVeque, R.J.: High-resolution finite volume modeling of wave propagation in orthotropic poroelastic media. SIAM J. Sci. Comput 35(1), B176–B206 (2013)

    Article  MathSciNet  Google Scholar 

  22. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  23. Morency, C., Luo, Y., Tromp, J.: Finite-frequency kernels for wave propagation in porous media based upon adjoint methods. Geophys. J. Int. 179(2), 1148–1168 (2009)

    Article  Google Scholar 

  24. Shukla, K., Chan, J., de Hoop, M.V., Jaiswal, P.: A weight-adjusted discontinuous Galerkin method for the poroelastic wave equation: penalty fluxes and micro-heterogeneities. J. Comput. Phys. 403 (2020)

  25. Shukla, K., Hesthaven, J.S., Carcione, J.M., Ye, R., de la Puente, J., Jaiswal, P.: A nodal discontinuous Galerkin finite element method for the poroelastic wave equation. Comput. Geosci. (2018)

  26. Tromp, J., Komatitsch, D., Liu, Q.: Spectral-element and adjoint methods in seismology. Commun. Comput. Phys. 3(1), 1–32 (2008)

    MATH  Google Scholar 

  27. Wilcox, L.C., Stadler, G., Bui-Thanh, T., Ghattas, O.: Discretely exact derivatives for hyperbolic PDE-constrained optimization problems discretized by the discontinuous Galerkin method. J. Sci. Comput. 63, 138–162 (2015)

    Article  MathSciNet  Google Scholar 

  28. Zhan, Q., Zhuang, M., Liu, Q.H.: A compact upwind flux with more physical insight for wave propagation in 3-d poroelastic media. IEEE Trans. Geosci. Remote Sens. 56(10), 5794–5801 (2018)

    Article  Google Scholar 

  29. Zhan, Q., Zhuang, M., Mao, Y., Liu, Q.H.: Unified Riemann solution for multi-physics coupling: anisotropic poroelastic/elastic/fluid interfaces. J. Comput. Phys. 402 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick Dudley Ward.

Additional information

Communicated by Tom Carroll.

In memoriam, W.K. Hayman, FRS.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudley Ward, N., Eveson, S. & Lähivaara, T. A Discontinuous Galerkin Method for Three-Dimensional Poroelastic Wave Propagation: Forward and Adjoint Problems. Comput. Methods Funct. Theory 21, 737–777 (2021). https://doi.org/10.1007/s40315-021-00395-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40315-021-00395-4

Keywords

Mathematics Subject Classification

Navigation