Skip to main content
Log in

Length and Area Estimates for (Hyperbolically) Convex Conformal Mappings

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

Let f be a conformal map on \({{\mathrm{\mathbb {D}}}}\). Keogh (J Lond Math Soc 29:121–123, 1954) obtained an upper bound for the length of the curve \(f(|z|=r)\), \(r \in (0,1)\), when f is a convex map. With the use of this upper bound, we prove a monotonicity result regarding the length of \(f(|z|=r)\). A similar kind of monotonicity result is proved for the area of \(f(|z|<r)\). Considering the case where \(f({{\mathrm{\mathbb {D}}}}) \subset {{\mathrm{\mathbb {D}}}}\) and f is a hyperbolically convex map, we present hyperbolic analogues of the above bounds. We prove two monotonicity theorems regarding the length and area in the hyperbolic geometry of the unit disk. In particular, the ratio of the hyperbolic length of the curve \(f(|z|=r)\) to the hyperbolic length of the curve \(|z|=r\) is a decreasing function of r. Furthermore, we prove that the ratio of the hyperbolic area of \(f(|z|<r)\) to the hyperbolic area of the disk \(|z|<r\) is also a decreasing function of r.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aulaskari, R., Chen, H.: Area inequality and \(Q_p\) norm. J. Funct. Anal. 221(1), 1–24 (2005)

    Article  MathSciNet  Google Scholar 

  2. Beardon, A.F., Minda, D.: The hyperbolic metric and geometric function theory. In: Quasiconformal Mappings and Their Applications, pp. 9–56. Narosa, New Delhi, (2007)

  3. Betsakos, D.: Geometric versions of Schwarz’s lemma for quasiregular mappings. Proc. Am. Math. Soc. 139(4), 1397–1407 (2011)

    Article  MathSciNet  Google Scholar 

  4. Betsakos, D.: Multi-point variations of the Schwarz lemma with diameter and width conditions. Proc. Am. Math. Soc. 139(11), 4041–4052 (2011)

    Article  MathSciNet  Google Scholar 

  5. Betsakos, D.: Hyperbolic geometric versions of Schwarz’s lemma. Conform. Geom. Dyn. 17, 119–132 (2013)

    Article  MathSciNet  Google Scholar 

  6. Betsakos, D., Pouliasis, S.: Versions of Schwarz’s lemma for condenser capacity and inner radius. Can. Math. Bull. 56(2), 241–250 (2013)

    Article  MathSciNet  Google Scholar 

  7. Burckel, R.B., Marshall, D.E., Minda, D., Poggi-Corradini, P., Ransford, T.J.: Area, capacity and diameter versions of Schwarz’s lemma. Conform. Geom. Dyn. 12, 133–152 (2008)

    Article  MathSciNet  Google Scholar 

  8. Chuaqui, M., Duren, P., Osgood, B.: Schwarzian derivatives of convex mappings. Ann. Acad. Sci. Fenn. Math. 36(2), 449–460 (2011)

    Article  MathSciNet  Google Scholar 

  9. Cleanthous, G.: Monotonicity theorems for analytic functions centered at infinity. Proc. Am. Math. Soc. 142(10), 3545–3551 (2014)

    Article  MathSciNet  Google Scholar 

  10. Dubinin, V.N.: Geometric versions of the Schwarz lemma and symmetrization. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 383(Analiticheskaya Teoriya Chisel i Teoriya Funktsiĭ. 25):63–76, 205–206, (2010)

  11. Duren, P.L.: Univalent Functions. Springer, New York (1983)

    MATH  Google Scholar 

  12. Keogh, F.R.: Some inequalities for convex and star-shaped domains. J. Lond. Math. Soc. 29, 121–123 (1954)

    Article  MathSciNet  Google Scholar 

  13. Kim, S.-A., Sugawa, T.: Characterizations of hyperbolically convex regions. J. Math. Anal. Appl. 309(1), 37–51 (2005)

    Article  MathSciNet  Google Scholar 

  14. Kourou, M.: Conformal mapping, convexity and total absolute curvature. Conform. Geom. Dyn. 22, 15–32 (2018)

    Article  MathSciNet  Google Scholar 

  15. Ma, W., Mejía, D., Minda, D.: Hyperbolically 1-convex functions. Ann. Pol. Math. 84(3), 185–202 (2004)

    Article  MathSciNet  Google Scholar 

  16. Ma, W., Minda, D.: Hyperbolically convex functions. Ann. Pol. Math. 60(1), 81–100 (1994)

    Article  MathSciNet  Google Scholar 

  17. Ma, W., Minda, D.: Hyperbolically convex functions. II. Ann. Pol. Math. 71(3), 273–285 (1999)

    Article  MathSciNet  Google Scholar 

  18. Mejía, D., Minda, D.: Hyperbolic geometry in \(k\)-convex regions. Pacific J. Math. 141(2), 333–354 (1990)

    Article  MathSciNet  Google Scholar 

  19. Mejía, D., Pommerenke, C.: On hyperbolically convex functions. J. Geom. Anal. 10(2), 365–378 (2000)

    Article  MathSciNet  Google Scholar 

  20. Papadimitrakis, M.: On convexity of level curves of harmonic functions in the hyperbolic plane. Proc. Am. Math. Soc. 114(3), 695–698 (1992)

    Article  MathSciNet  Google Scholar 

  21. Pólya, G., Szegő, G.: Problems and Theorems in Analysis. I, vol. 193. Springer, Berlin (1978)

    MATH  Google Scholar 

  22. Ch. Pommerenke. Univalent Functions. Vandenhoeck & Ruprecht, Göttingen, 1975. With a chapter on quadratic differentials by Gerd Jensen, Studia Mathematica/Mathematische Lehrbücher, Band XXV

  23. Ransford, T.: Potential Theory in the Complex Plane. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Kourou.

Additional information

Communicated by Stephan Ruscheweyh.

I thank Professor D. Betsakos for his help and advice during the preparation of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kourou, M. Length and Area Estimates for (Hyperbolically) Convex Conformal Mappings. Comput. Methods Funct. Theory 18, 723–750 (2018). https://doi.org/10.1007/s40315-018-0254-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40315-018-0254-2

Keywords

Mathematics Subject Classification

Navigation