Skip to main content
Log in

A positivity-preserving edge-centred finite volume scheme for heterogeneous and anisotropic diffusion problems on polygonal meshes

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In many application problems such as the electromagnetics, the unknowns are usually defined at the edges to satisfy the continuity requirement. This paper develops the first positivity-preserving edge-centred finite volume scheme for diffusion problems on general unstructured polygonal meshes. The edge-centred unknowns are primary and have associated finite volume equations. The cell-vertex and cell-centred unknowns are treated as auxiliary ones and are interpolated by the primary unknowns, making the final scheme purely edge-centred. The scheme has a fixed stencil due to the fixed decomposition of the co-normal, which makes the scheme very easy to implement. The positivity-preserving property is rigorously proved. Numerical experiments indicate that the scheme has second-order accuracy and positivity for heterogeneous and anisotropic problems on highly distorted meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  • Aavatsmark I, Barkve T, Bøe O, Mannseth T (1998) Discretization on unstructured grids for inhomogeneous, anisotropic media. I. Derivation of the methods. SIAM J Sci Comput 19(5):1700–1716

    Article  MathSciNet  Google Scholar 

  • Brezzi F, Lipnikov K, Simoncini V (2005) A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math Models Methods Appl Sci 15(10):1533–1551

    Article  MathSciNet  Google Scholar 

  • Camier J, Hermeline F (2016) A monotone nonlinear finite volume method for approximating diffusion operators on general meshes. Int J Numer Methods Eng 107:496–519

    Article  MathSciNet  Google Scholar 

  • Contreras F, Lyra P, Souza M, Carvalho D (2016) A cell-centered multipoint flux approximation method with a diamond stencil coupled with a higher order finite volume method for the simulation of oil-water displacements in heterogeneous and anisotropic petroleum reservoirs. Comput Fluids 127:1–16

    Article  MathSciNet  Google Scholar 

  • Coudière Y, Vila J-P, Villedieu P (1999) Convergence rate of a finite volume scheme for a two-dimensional convection-diffusion problem. M2AN Math Model Numer Anal 33(3):493–516

    Article  MathSciNet  Google Scholar 

  • Droniou J (2014) Finite volume schemes for diffusion equations: introduction to and review of modern methods. Math Models Methods Appl Sci 24(8):1575–1619

    Article  MathSciNet  Google Scholar 

  • Gao Z, Wu J (2015) A second-order positivity-preserving finite volume scheme for diffusion equations on general meshes. SIAM J Sci Comput 37(1):A420–A438

    Article  MathSciNet  Google Scholar 

  • Giacomini M, Sevilla R (2020) A second-order face-centred finite volume method on general meshes with automatic mesh adaptation. Int J Numer Methods Eng 121(23):5227–5255

    Article  MathSciNet  Google Scholar 

  • Goldston RJ (2020) Introduction to plasma physics. CRC Press, Boca Raton

    Book  Google Scholar 

  • Le Potier C (2005) Schéma volumes finis monotones pour des opérateurs de diffusion fortement anisotropes sur des maillages de triangles non structurés. C R Acad Sci Paris Ser I(341):787–792

    Article  Google Scholar 

  • Lipnikov K, Shashkov M, Svyatskiy D, Vassilevski Y (2007) Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes. J Comput Phys 227(1):492–512

    Article  MathSciNet  Google Scholar 

  • Lipnikov K, Svyatskiy D, Vassilevski Y (2009) Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes. J Comput Phys 228(3):703–716

    Article  MathSciNet  Google Scholar 

  • Lipnikov K, Svyatskiy D, Vassilevski Y (2012) Minimal stencil finite volume scheme with the discrete maximum principle. Russ J Numer Anal Math Model 27(4):369–385

    Article  MathSciNet  Google Scholar 

  • Lipnikov K, Manzini G, Shashkov M (2014) Mimetic finite difference method. J Comput Phys 257:1163–1227

    Article  MathSciNet  Google Scholar 

  • Liu Z, Miao S, Zhang Z (2023) A family of edge-centered finite volume schemes for heterogeneous and anisotropic diffusion problems on unstructured meshes. Comput Math Appl 146:165–175

    Article  MathSciNet  Google Scholar 

  • Markowich P, Ringhofer C, Schmeiser C (1990) Semiconductor equations. Springer Vienna, Vienna

    Book  Google Scholar 

  • Miao S, Wu J (2022) A nonlinear correction scheme for the heterogeneous and anisotropic diffusion problems on polygonal meshes. J Comput Phys 448:110729

    Article  MathSciNet  Google Scholar 

  • Potier CL (2020) A second order in space combination of methods verifying a maximum principle for the discretization of diffusion operators. C R Math Acad Sci Paris 358(1):89–95

    Article  MathSciNet  Google Scholar 

  • Schneider M, Gläser D, Flemisch B, Helmig R (2018) Comparison of finite-volume schemes for diffusion problems. Oil Gas Sci Technol - Rev IFP Energies nouvelles 73:82

    Article  Google Scholar 

  • Sevilla R, Giacomini M, Huerta A (2018) A face-centred finite volume method for second-order elliptic problems. Int J Numer Methods Eng 115(8):986–1014

    Article  MathSciNet  Google Scholar 

  • Sevilla R, Giacomini M, Huerta A (2019) A locking-free face-centred finite volume (FCFV) method for linear elastostatics. Comput Struct 212:43–57

    Article  Google Scholar 

  • Su S, Dong Q, Wu J (2018) A decoupled and positivity-preserving discrete duality finite volume scheme for anisotropic diffusion problems on general polygonal meshes. J Comput Phys 372:773–798

    Article  MathSciNet  Google Scholar 

  • Su S, Dong Q, Wu J (2019) A vertex-centered and positivity-preserving scheme for anisotropic diffusion equations on general polyhedral meshes. Math Methods Appl Sci 42(1):59–84

  • Terekhov K, Mallison B, Tchelepi H (2017) Cell-centered nonlinear finite-volume methods for the heterogeneous anisotropic diffusion problem. J Comput Phys 330:245–267

    Article  MathSciNet  Google Scholar 

  • Vieira L, Giacomini M, Sevilla R, Huerta A (2020) A second-order face-centred finite volume method for elliptic problems. Comput Methods Appl Mech Eng 358(112655):23

    MathSciNet  Google Scholar 

  • Vila-Pérez J, Giacomini M, Sevilla R, Huerta A (2022) A non-oscillatory face-centred finite volume method for compressible flows. Comput Fluids 235:105272

    Article  MathSciNet  Google Scholar 

  • Wang Y, Yang T, Chang L (2022) An edge-centered scheme for anisotropic diffusion problems with discontinuities on distorted quadrilateral meshes. J Comput Sci 64:101832

    Article  Google Scholar 

  • Yuan G, Sheng Z (2008) Monotone finite volume schemes for diffusion equations on polygonal meshes. J Comput Phys 227(12):6288–6312

    Article  MathSciNet  Google Scholar 

  • Zhang X, Su S, Wu J (2017) A vertex-centered and positivity-preserving scheme for anisotropic diffusion problems on arbitrary polygonal grids. J Comput Phys 344:419–436

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for the carefully readings and valuable suggestions. This work was partially supported by the National Natural Science Foundation of China (12201020, 12288101), the State-funded Postdoctoral Fellowship Program (GZB20230028), and the China Postdoctoral Science Foundation grants (2023M740103), the foundation of LCP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Su.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma 1

For arbitrary two triangles \(\triangle \varvec{x}_E\varvec{x}_P\varvec{x}_K\) and \(\triangle \varvec{x}_F\varvec{x}_P\varvec{x}_K\) with the common edge \(\sigma \) (see Fig. 2), \(\varvec{n}_{E,\sigma }\) is the unit outer vector normal to the edge \(\sigma \) outward to the triangle \(\triangle \varvec{x}_E\varvec{x}_P\varvec{x}_K\). \(\Lambda \) is a positive definite tensor. For the decomposition (3) and (7), we have

$$\begin{aligned} d_{E,\sigma }(\alpha _{E,\sigma }+\beta _{E,\sigma })=d_{F,\sigma }(\alpha _{F,\sigma }+\beta _{F,\sigma })>0. \end{aligned}$$
(27)

where \(d_{E,\sigma }\) (resp. \(d_{F,\sigma }\)) denotes the distance from the vertex \({\varvec{x}}_{E}\) (resp. \({\varvec{x}}_{F}\)) to the edge \({\varvec{x}}_K{\varvec{x}}_P\).

Proof

The geometrical relations gives

$$\begin{aligned} {({\varvec{x}}_{K}{\varvec{x}}_{E})^T\mathcal {R}({\varvec{x}}_{P}{\varvec{x}}_{E}) =-({\varvec{x}}_{P}{\varvec{x}}_{E})^T\mathcal {R}({\varvec{x}}_{K}{\varvec{x}}_{E})} =-|{\varvec{x}}_K{\varvec{x}}_P|d_{E,\sigma }. \end{aligned}$$

Combined this with (4), we have

$$\begin{aligned} \alpha _{E,\sigma }+\beta _{E,\sigma } ={\frac{|{\varvec{x}}_K{\varvec{x}}_P|{\varvec{n}}_{E,\sigma }^T\Lambda \mathcal {R}({\varvec{x}}_P{\varvec{x}}_K)}{({\varvec{x}}_{K}{\varvec{x}}_{E})^T\mathcal {R}({\varvec{x}}_P{\varvec{x}}_{E})} }=\frac{|{\varvec{x}}_K{\varvec{x}}_P|{\varvec{n}}_{E,\sigma }^T\Lambda {\varvec{n}}_{E,\sigma }}{d_{E,\sigma }}, \end{aligned}$$

where the identity \({\mathcal {R}({\varvec{x}}_P{\varvec{x}}_K)}=-|{\varvec{x}}_K{\varvec{x}}_P|{\varvec{n}}_{E,\sigma }\) is used in second equality. Similarly, we obtain

$$\begin{aligned} \alpha _{F,\sigma }+\beta _{F,\sigma } =\frac{|{\varvec{x}}_K{\varvec{x}}_P|{\varvec{n}}_{F,\sigma }^T\Lambda {\varvec{n}}_{F,\sigma }}{d_{F,\sigma }}. \end{aligned}$$

Recalling that \({\varvec{n}}_{E,\sigma }=-{\varvec{n}}_{F,\sigma }\) and \(\Lambda \) is positive definite, we immediately obtain (27). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, S., Su, S. A positivity-preserving edge-centred finite volume scheme for heterogeneous and anisotropic diffusion problems on polygonal meshes. Comp. Appl. Math. 43, 196 (2024). https://doi.org/10.1007/s40314-024-02716-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-024-02716-4

Keywords

Mathematics Subject Classification

Navigation