Skip to main content
Log in

A generalized combinatorial marching hypercube algorithm

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

We present a Generalized Combinatorial Marching Hypercubes algorithm to compute a cell complex approximation of a manifold of any dimension and co-dimension, that is, a manifold of dimension \(n-k\) embedded into an n-dimensional space. The algorithm uses combinatorial and topological methods to avoid the use of expensive lookup tables and hence is efficient in higher dimensions. We illustrate the effectiveness of our algorithm in higher dimensions and compare its performance with a similar algorithm based on a simplicial decomposition of the domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Algorithm 1
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The data which supports the findings of this study was generated using the code available at https://github.com/gknakassima/GCMH. The images were generated using this data and the visualization software available at https://github.com/GSBicalho/TrueNgineJS.

References

  • Allgower E, Georg K (1980) Simplicial and continuation methods for approximating fixed points and solutions to systems of equations. SIAM Rev 22(1):28–85

    Article  MathSciNet  Google Scholar 

  • Bhaniramka P, Wenger R, Crawfis R (2000) Isosurfacing in higher dimensions. In: Proceedings visualization 2000. VIS 2000 (Cat. No. 00CH37145), pp 267–273. IEEE

  • Bhaniramka P, Wenger R, Crawfis R (2004) Isosurface construction in any dimension using convex hulls. IEEE Trans Visual Comput Graph 10(2):130–141

    Article  Google Scholar 

  • Bloomenthal J (1988) Polygonization of implicit surfaces. Comput Aided Geom Des 5(4):341–355. https://doi.org/10.1016/0167-8396(88)90013-1

    Article  MathSciNet  Google Scholar 

  • Bloomenthal J, Bajaj C, Blinn J, Wyvill B, Cani M-P, Rockwood A, Wyvill G (1997) Introduction to implicit surfaces. Morgan Kaufmann, San Francisco

    Google Scholar 

  • Boissonnat J, Kachanovich S, Wintraecken M (2021) Tracing isomanifolds in \(\mathbb{R}^{d}\) in time polynomial in d using coxeter-freudenthal-kuhn triangulations. In: Buchin K, de Verdière É C (eds) 37th International symposium on computational geometry, SoCG 2021, June 7–11, 2021, Buffalo, NY, USA (Virtual Conference). LIPIcs, vol 189. Schloss Dagstuhl—Leibniz-Zentrum für Informatik, Virtual conference (2021). https://doi.org/10.4230/LIPIcs.SoCG.2021.17

  • Botsch M, Kobbelt L, Pauly M, Alliez P, Lévy B (2010) Polygon mesh processing. CRC Press, Natick

    Book  Google Scholar 

  • Brodzik M (1998) The computation of simplicial approximations of implicitly defined \(p\)-dimensional manifolds. Comput Math Appl 36(6):93–113

    Article  MathSciNet  Google Scholar 

  • Carr H, Snoeyink J (2003) Path seeds and flexible isosurfaces using topology for exploratory visualization. In: Bonneau G-P, Hahmann S, Hansen CD (eds) Eurographics/IEEE VGTC symposium on visualization. The Eurographics Association. https://doi.org/10.2312/VisSym/VisSym03/049-058

  • Castelo A, Nonato LG, Siqueira MF, Minghim R, Tavares G (2006) The \(J_1^a\) triangulation: an adaptive triangulation in any dimension. Comput Graph 30(5):737–753

    Article  Google Scholar 

  • Castelo A, Moutinho Bueno L, Gameiro M (2022) A combinatorial marching hypercubes algorithm. Comput Graph 102:67–77. https://doi.org/10.1016/j.cag.2021.10.023

    Article  Google Scholar 

  • Chernyaev E (1995) Marching Cubes 33: Construction of topologically correct isosurfaces. Technical report

  • Choquet-Bruhat Y, DeWitt-Morette C, de Witt C, Bleick MD, Dillard-Bleick M (1982) Analysis manifolds and physics. Gulf Professional Publishing, Amsterdam

    Google Scholar 

  • Coxeter HSM (1934) Discrete groups generated by reflections. Ann Math 35:588–621

    Article  MathSciNet  Google Scholar 

  • Custodio L, Etiene T, Pesco S, Silva C (2013) Practical considerations on Marching Cubes 33 topological correctness. Comput Graph 37(7):840–850

    Article  Google Scholar 

  • Dietrich CA, Scheidegger CE, Schreiner J, Comba JL, Nedel LP, Silva CT (2008) Edge transformations for improving mesh quality of Marching Cubes. IEEE Trans Vis Comput Graph 15(1):150–159

    Article  Google Scholar 

  • Dobkin DP, Wilks AR, Levy SVF, Thurston WP (1990) Contour tracing by piecewise linear approximations. ACM Trans Graph 9(4):389–423. https://doi.org/10.1145/88560.88575

    Article  Google Scholar 

  • Doi A, Koide A (1991) An efficient method of triangulating equi-valued surfaces by using tetrahedral cells. IEICE Trans Inf Syst 74(1):214–224

    Google Scholar 

  • Dyken C, Ziegler G, Theobalt C, Seidel H-P (2008) High-speed Marching Cubes using HistoPyramids. In: Computer graphics forum, vol 27, pp 2028–2039. Blackwell Publishing Ltd Oxford

  • Freudenthal H (1942) Simplizalzerlegungen von beschränkter flachheit. Ann Math 43:580–582

    Article  MathSciNet  Google Scholar 

  • Gameiro M, Lessard J-P, Pugliese A (2016) Computation of smooth manifolds via rigorous multi-parameter continuation in infinite dimensions. Found Comput Math 16:531–575

    Article  MathSciNet  Google Scholar 

  • Gomes A, Voiculescu I, Jorge J, Wyvill B, Galbraith C (2009) Implicit curves and surfaces: mathematics, data structures and algorithms. Springer, London

    Book  Google Scholar 

  • Gonçalves LF, Lee W, Chaiworapongsa T, Espinoza J, Schoen ML, Falkensammer P, Treadwell M, Romero R (2003) Four-dimensional ultrasonography of the fetal heart with spatiotemporal image correlation. Am J Obstet Gynecol 189(6):1792–1802

    Article  Google Scholar 

  • Guéziec A, Hummel R (1995) Exploiting triangulated surface extraction using tetrahedral decomposition. IEEE Trans Vis Comput Graph 1(4):328–342

    Article  Google Scholar 

  • Hamish C, Duffy B, Denby B (2006) On histograms and isosurface statistics. IEEE Trans Vis Comput Graph 12(5):1259–1266. https://doi.org/10.1109/TVCG.2006.168

    Article  Google Scholar 

  • Howic CT, Blake EH (1994) The mesh propagation algorithm for isosurface construction. Comput Graph Forum 13(3):65–74. https://doi.org/10.1111/1467-8659.1330065

    Article  Google Scholar 

  • Itoh T, Koyamada K (1995) Automatic isosurface propagation using an extrema graph and sorted boundary cell lists. IEEE Trans Vis Comput Graph 1(4):319–327. https://doi.org/10.1109/2945.485619

    Article  Google Scholar 

  • Ji G, Shen H-W, Wenger R (2003) Volume tracking using higher dimensional isosurfacing. In: IEEE visualization, 2003. VIS 2003, pp 209–216. https://doi.org/10.1109/VISUAL.2003.1250374

  • Khoury M, Wenger R (2010) On the fractal dimension of isosurfaces. IEEE Trans Vis Comput Graph 16(6):1198–1205. https://doi.org/10.1109/TVCG.2010.182

    Article  Google Scholar 

  • Kuhn HW (1968) Simplicial approximation of fixed points. Proc Natl Acad Sci U S A 61:1238–1242

    Article  MathSciNet  Google Scholar 

  • Lewiner T, Lopes H, Vieira AW, Tavares G (2003) Efficient implementation of Marching Cubes’ cases with topological guarantees. J Graph Tools 8(2):1–15

    Article  Google Scholar 

  • Liao Y, Donne S, Geiger A (2018) Deep Marching Cubes: learning explicit surface representations. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2916–2925

  • Lorensen WE, Cline HE (1987) Marching Cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput Graph 21(4):163–169

    Article  Google Scholar 

  • Markl M, Frydrychowicz A, Kozerke S, Hope M, Wieben O (2012) 4D flow MRI. J Magn Reson Imaging 36(5):1015–1036

    Article  Google Scholar 

  • Min C (2003) Simplicial isosurfacing in arbitrary dimension and codimension. J Comput Phys 190(1):295–310

    Article  MathSciNet  Google Scholar 

  • Newman TS, Yi H (2006) A survey of the Marching Cubes algorithm. Comput Graph 30(5):854–879

    Article  Google Scholar 

  • Nielson GM, Hamann B (1991) The asymptotic decider: resolving the ambiguity in Marching Cubes. In: Proceedings of the 2nd conference on visualization’91, pp 83–91. IEEE Computer Society Press

  • Onosato M, Saito Y, Tanaka F, Kawagishi R (2014) Weaving a four-dimensional mesh model from a series of three-dimensional voxel models. Comput Aided Des Appl 11(6):649–658

    Article  Google Scholar 

  • Otomo I, Onosato M, Tanaka F (2014) Direct construction of a four-dimensional mesh model from a three-dimensional object with continuous rigid body movement. J Comput Des Eng 1(2):96–102. https://doi.org/10.7315/JCDE.2014.010

    Article  Google Scholar 

  • Pan T, Lee T-Y, Rietzel E, Chen GT (2004) 4D-CT imaging of a volume influenced by respiratory motion on multi-slice CT. Med Phys 31(2):333–340

    Article  Google Scholar 

  • Plantinga S, Vegter G (2004) Isotopic approximation of implicit curves and surfaces. In: Proceedings of the 2004 eurographics/ACM SIGGRAPH symposium on geometry processing, pp 245–254

  • Raman S, Wenger R (2008) Quality isosurface mesh generation using an extended Marching Cubes lookup table. In: Computer graphics forum, vol 27, pp 791–798. Wiley Online Library

  • Roberts JC, Hill S (1999) Piecewise linear hypersurfaces using the Marching Cubes algorithm. In: Visual data exploration and analysis VI, vol 3643, pp 170–181. International Society for Optics and Photonics

  • Scarf H (1967) The approximation of fixed points of a continuous mapping. SIAM J Appl Math 15(5):1328–1343

    Article  MathSciNet  Google Scholar 

  • Schwaha P, Heinzl R (2010) Marching simplices. In: AIP conference proceedings, vol 1281, pp 1651–1654. American Institute of Physics

  • Sharf A, Alcantara DA, Lewiner T, Greif C, Sheffer A, Amenta N, Cohen-Or D (2008) Space-time surface reconstruction using incompressible flow. ACM Trans Graph (TOG) 27(5):1–10

    Article  Google Scholar 

  • Strang G (2005) Linear algebra and its applications, 4th edn. Cengage Learning, Belmont

    Google Scholar 

  • Treece GM, Prager RW, Gee AH (1999) Regularised Marching Tetrahedra: improved iso-surface extraction. Comput Graph 23(4):583–598

    Article  Google Scholar 

  • Weigle C, Banks DC (1998) Extracting iso-valued features in 4-dimensional scalar fields. In: IEEE symposium on volume visualization (Cat. No. 989EX300), pp 103–110. IEEE

Download references

Acknowledgements

The authors would like to thank Gabriel Scalet Bicalho for providing the software used to project and visualize the manifolds in this paper. The source code for the visualization software can be downloaded at https://github.com/GSBicalho/TrueNgineJS. This work was supported by the São Paulo Research Foundation (FAPESP) Grants 2013/07375-0 and 2019/07316-0, Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant No. 307483/2017-7). The work of G.N. was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. The work of L.M.B. was supported by the São Paulo Research Foundation (FAPESP) Grant 2017/25631-4. The work of M.G. was partially supported by the National Science Foundation under awards DMS-1839294 and HDR TRIPODS award CCF-1934924, DARPA contract HR0011-16-2-0033, National Institutes of Health award R01 GM126555, and Air Force Office of Scientific Research under award numbers FA9550-23-1-0011 and AWD00010853-MOD002, by FAPESP Grant 2019/06249-7 and CNPq Grant 309073/2019-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme Nakassima.

Additional information

Communicated by Carlos Hoppen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castelo, A., Nakassima, G., Bueno, L.M. et al. A generalized combinatorial marching hypercube algorithm. Comp. Appl. Math. 43, 127 (2024). https://doi.org/10.1007/s40314-024-02627-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-024-02627-4

Keywords

Mathematics Subject Classification

Navigation