Skip to main content
Log in

Nash equilibria for quasi-linear parabolic problems

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper discusses the application of the Nash strategy to a quasi-linear parabolic equation and a quasi-linear parabolic equation with a semilinear term. First, we demonstrate the existence of a Nash quasi-equilibrium for both equations using the fixed point method. Subsequently, we establish that the functionals are convex, ensuring that the Nash quasi-equilibrium is, in fact, a Nash equilibrium. Additionally, in conjunction with the theoretical results, numerical techniques are developed for each problem. To describe the iterative algorithms, the Newton’s Method is utilized in combination with the Finite Element Method and Finite Difference Method. All algorithms are implemented using the Freefem++ software, and various results are presented through figures and comparative graphics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All methods were conducted in accordance with relevant guidelines and procedures, without the involvement of experiments on humans.Requests for further access to specific data presented in this article should be directed to Pitágoras Pinheiro de Carvalho (pitagorascarvalho@gmail.com).

References

  • Alvarez-Vázquez LJ, García-Chan N, Martínez A, Vázquez-Méndez ME (2010) Multi-objective Pareto-optimal control: an application to wastewater management. Comput Optim Appl 46(1):135–157

    Article  MathSciNet  Google Scholar 

  • Araruna FD, Araújo BSV, Fernández-Cara E (2018) Stackelberg–Nash null controllability for some linear and semilinear degenerate parabolic equations. Math Control Signals Syst. https://doi.org/10.1007/s00498-018-0220-6

    Article  MathSciNet  Google Scholar 

  • de Carvalho PP (2021) Some numerical results for control of 3D heat equations using Nash equilibrium. Comput Appl Math 40(3):1–30

    Article  MathSciNet  Google Scholar 

  • de Carvalho PP, Fernandez-Cara E (2019) On the computation of Nash and Pareto equilibria for some bi-objective control problems. J Sci Comput 78:246–273

    Article  MathSciNet  Google Scholar 

  • De Carvalho P, Fernandez-Cara E (2020) Numerical Stackelberg–Nash control for the heat equation. SIAM J Sci Comput 42(5):A2678–A2700

    Article  MathSciNet  Google Scholar 

  • de Carvalho PP, Fernández-Cara E, Ferrel JBL (2020) On the computation of Nash and Pareto equilibria for some bi-objective control problems for the wave equation. Adv Comput Math 46:1–30

    Article  MathSciNet  Google Scholar 

  • de Carvalho PP, de Jesus IP, de Sá Neto OP (2022) On the computation of hierarchical control results for one-dimensional transmission line. Math Appl 50:11

    MathSciNet  Google Scholar 

  • Diaz JI (2002) On the von Neumann problem and the approximate controllability of Stackelberg–Nash strategy for some environmental problems. RACSAM Rev R Acad Cien Exactas Nat Ser A Math 96:343–356

    Google Scholar 

  • Diaz JI, Lions J-L (2004) On the approximate controllability of Stackelberg–Nash strategies. Ocean Circ Pollut Control Math Numer Invest (Springer) 87:17–27

    MathSciNet  Google Scholar 

  • Fernández-Cara E, Marín-Gayte I (2021) Bi-objective optimal control of some: Nash equilibria and quasi-equilibria. Control Optim Calculus Var (ESAIM) 27: 30

  • Fernández-Cara E, Límaco J, Marín-Gayte I (2021) Theoretical and numerical local null controllability of a quasi-linear parabolic equation in dimensions 2 and 3. J Franklin Inst 358:2846–2871

    Article  MathSciNet  Google Scholar 

  • García-Chan N, Muñoz-Sola R, Vázquez-Méndez ME (2006) Nash equilibrium for a multi-objective control problem related to wastewater management. Math Phys Electron J 12:11

    Google Scholar 

  • Guillén-González F, Marques-Lopes FP, Rojas-Medar MA (2013) On the approximate controllability of Stackelberg–Nash strategies for Stokes equations. Proc Am Math Soc 141:1759–1773

    Article  MathSciNet  Google Scholar 

  • Hecht F (2012) New development in Free FEM++. J Numer Math 20(3–4):251–266

    MathSciNet  Google Scholar 

  • Hernández-Santamaría V, de Teresa L (2018) Robust Stackelberg controllability for linear and semilinear heat equations. Evolut Equ Control Theory 7.2:247–273

    Article  MathSciNet  Google Scholar 

  • Huaman DN, Límaco J (2021) Stackelberg–Nash controllability for N-dimensional nonlinear parabolic partial differential equations. Appl Math Optim 84:1401–1452

    Article  MathSciNet  Google Scholar 

  • Kravvaritis Dimitrios C, Yannacopoulos Athanasios N (2020) Variational methods in nonlinear analysis: with applications in optimization and partial differential equations. De Gruyter, Berlin

    Book  Google Scholar 

  • Límaco J, Clark HR, Medeiros LA (2009) Remarks on hierarchic control. J Math Anal Appl 359(1):368–383

    Article  MathSciNet  Google Scholar 

  • Lions J-L (1986) Contrôle de Pareto de systemes distribués. Le cas d’évolution. CR Acad Sci Paris S’er I 302:413–417

    Google Scholar 

  • Lions J-L (1994) Hierarchic control. Proc Indian Acad Sci (Math Sci) 104(1):295–304

    Article  MathSciNet  Google Scholar 

  • Lions J-L (1994) Some remarks on Stackelberg’s optimization. Math Models Methods Appl Sci 4:477–487

    Article  MathSciNet  Google Scholar 

  • Liu X, Zhang X (2012) Local controllability of multidimensional quasi-linear parabolic equations. SIAM J Control Optim 50:4

  • Mazari I Domènec Ruiz-Balet 2—spatial ecology, optimal control and game theoretical fishing problems. J Math Biol 85:55

  • Nash JF (1951) Non-cooperative games. Ann Math 54:286–295

    Article  MathSciNet  Google Scholar 

  • Pareto V (1896) Cours d’économie politique, Switzerland

  • Ramos AM (2023) Nash equilibria strategies and equivalent single-objective optimization problems: the case of linear partial differential equations. Appl Math Optim 87:30

    Article  MathSciNet  Google Scholar 

  • Rincon MA, Límaco J, Liu I-S (2006) A nonlinear heat equation with temperature-dependent parameters. Math Phys Electron J 12:21

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Bautista Límaco Ferrel.

Additional information

Communicated by Fabricio Simeoni de Sousa.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by CNPq, grant number 306541/2022-0 (Brazil).

Appendix A

Appendix A

In this section we will deal with the well-posedness of differential equations (1.1) and (1.2). To facilitate the exposition we consider on the right side of each equation a function f and g, respectively.

Theorem 5

Under the hypotheses \(({\textbf{H}}1)\), \(({\textbf{H}}2)\), \(u_0 \in H^1_0(\Omega ) \cap H^2(\Omega )\), \(f \in L^2(\Omega \times (0,T))\), there exist a positive constant \(\epsilon _0\) such that, if \(u_0\) satisfies \((\Vert u_0 \Vert + a_1 \Vert u_0\Vert + \vert f \vert _{L^2(Q)}) < e_0\), then the problem (1.1) admits a unique solution \(u: Q \longrightarrow \mathbb {R}\), satisfying

$$\begin{aligned} u \in L^{\infty }(0,T;H^{1}_{0}(\Omega )\cap L^2(\Omega )) \cap L^{2}(0,T;H^1_{0}(\Omega )\cap H^2(\Omega )), u_t \in L^2(0,T;L^2(\Omega )). \end{aligned}$$

Theorem 6

Under the hypotheses \(({\textbf{H}}1)\), \(({\textbf{H}}2)\), \(u_0 \in H^1_0(\Omega ) \cap H^2(\Omega )\), \(g \in L^2(\Omega \times (0,T))\), there exist a positive constant \(\epsilon _0\) such that, if \(u_0\) satisfies \((\Vert u_0 \Vert + a_1 \Vert u_0\Vert + \vert g \vert _{L^2(Q)}) < e_0\) then the problem (1.2) admits a unique solution \(u: Q \rightarrow \mathbb {R}\), satisfying

$$\begin{aligned}u \in L^{\infty }(0,T;H^{1}_{0}(\Omega )\cap L^2(\Omega )) \cap L^{2}(0,T;H^1_{0}(\Omega )\cap H^2(\Omega )), u_t \in L^2(0,T;L^2(\Omega )). \end{aligned}$$

Proof of Theorem 5

To prove the theorem, we employ Galerkin Method with the Hilbertian basis from \(H^1_0(\Omega )\), given by the eigenvectors \((w_j)\) of the spectral problem: \((w_j,v) = \lambda _j (w_j, v)\) for all \(v \in V = H^1_0(\Omega ) \cap H^2(\Omega )\) and \(j = 1, 2, \ldots \). We represent by \(V_m\) the subspace of V generated by vectors \({w_1, w_2,\ldots , w_m }\). We propose the following approximate problem: Determine \(u_m \in V_m\), so that

$$\begin{aligned} (3) \, \left\{ \begin{array}{ll} (u'_m,v)+ (a(u_m)\nabla u_m,\nabla v) = (f,v) \\ begin{eqnarray*}8pt] u_m(0)=u_{0m}\rightarrow u_0 ~in~ H^{1}_0(\Omega ) \end{array} \right. \end{aligned}$$

Existence

The system of ordinary differential equations (3) has a local solution \(u_m = u_m (x,t)\) in the interval \((0, T_m)\). The estimates that follow permit to extend the solution \(u_m (x,t)\) to interval [0, T[ for all \(T > 0\) and to take the limit in (3).

Estimate I Taking \(v = u_m (t)\) in equation \((3)_1\)

$$\begin{aligned} (u'_m,u_m)+ (a(u_m)\nabla u_m,\nabla u_m) = (f,u_m) \end{aligned}$$

from hypothesis (H1), we have the following inequality,

$$\begin{aligned} \frac{1}{2}\frac{d}{dt}\vert u_m \vert ^2 + a_0 \Vert u_m \Vert ^{2}\le & {} \int _{\Omega } \vert f \vert \vert u_m \vert \\\le & {} \vert f \vert _{L^2} \vert u_m \vert _{L^2} \\\le & {} \frac{1}{2} \vert f \vert ^2_{L^2} + \frac{1}{2}\vert u_m \vert ^2_{L^2} \,, \end{aligned}$$

and integrating over (0, t), we obtain:

$$\begin{aligned} \frac{1}{2}\vert u_m(t) \vert ^2_{L^2} + a_0 \int _0^t \Vert u_m \Vert ^{2}\le & {} \frac{1}{2}\vert u_m(0)\vert ^2_{L^2} + \frac{1}{2} \int _{0}^T \vert f \vert ^2_{L^2} + \frac{1}{2}\int _{0}^t \vert u_m \vert ^2_{L^2} \\\le & {} \frac{1}{2}\vert u_0\vert ^2_{L^2} + \frac{1}{2}\vert f \vert ^2_{L^2(Q)} + \frac{1}{2} \int _{0}^t \vert u_m \vert ^2_{L^2} \\ \vert u_m \vert ^2 + \int _0^t \Vert u_m \Vert ^{2}\le & {} C_1(\vert u_0\vert ^2_{L^2} + \vert f \vert ^2_{L^2(Q)}) + C_2 \int _{0}^t \vert u_m \vert ^2_{L^2} \,. \end{aligned}$$

Therefore, applying the Gronwall’s inequality, we obtain the following estimate:

$$\begin{aligned} \vert u_m\vert _{L^{\infty }(0,T,L^2)} + \vert u_m \vert _{L^2(0,T,H^1_0)} \le C(\vert u_0\vert _{L^2} + \vert f \vert _{L^2(Q)})e^{TC_2} \,. \end{aligned}$$

Estimate II Taking \(v = u'_m (t)\) in equation \((3)_1\), we obtain

$$\begin{aligned} (u'_m,u'_m)+ (a(u_m)\nabla u_m,\nabla u'_m) = (f,u'_m) \end{aligned}$$

since

$$\begin{aligned} \frac{d}{dt}\int _{\Omega }a(u_m)\vert \nabla u_m \vert ^2=\int _{\Omega }\frac{da}{du}(u_m)u'_m\vert \nabla u_m \vert ^2 + 2 \int _{\Omega }a(u_m)\nabla u_m \nabla u'_m \end{aligned}$$

we get

$$\begin{aligned} \vert u'_m \vert ^2_{L^2} + \frac{1}{2}\frac{d}{dt}\int _{\Omega }a(u_m)\vert \nabla u_m \vert ^2= & {} \frac{1}{2}\int _{\Omega }\frac{da}{du}(u_m)u'_m\vert \nabla u_m \vert ^2 + (f,u'_m) \\= & {} I_1 + I_2 \,. \end{aligned}$$

On the other hand, from hypothesis (H2), we have the following inequality,

$$\begin{aligned} \vert I_1 \vert\le & {} \frac{1}{2} M C_0 \int _{\Omega }\vert u'_m \vert \vert \nabla u_m \vert \vert \nabla u_m \vert \\\le & {} C\vert u'_m \vert _{L^2}\vert \nabla u_m \vert _{L^4} \vert \nabla u_m \vert _{L^4} \\\le & {} C\vert u'_m \vert _{L^2} \vert \nabla u_m \vert _{H^1} \vert \Delta u_m \vert _{L^2} \\\le & {} \epsilon \vert \Delta u_m \vert ^2_{L^2} + C(\epsilon )\vert u'_m \vert ^2_{L^2} \vert \nabla u_m \vert ^2_{L^2} \\ \vert I_2 \vert\le & {} \int _{\Omega } \vert f \vert \vert u'_m \vert \\\le & {} \vert f \vert _{L^2} \vert u'_m \vert _{L^2} \\\le & {} \epsilon _2 \vert u'_m \vert ^2_{L^2} + C(\epsilon _2) \vert f \vert ^2_{L^2} \,. \end{aligned}$$

Substituting into the right-hand side of (6.1), we get

$$\begin{aligned}{} & {} \vert u'_m \vert ^2_{L^2} + \frac{1}{2}\frac{d}{dt}\int _{\Omega }a(u_m)\vert \nabla u_m \vert ^2\nonumber \\{} & {} \quad \le \epsilon \vert \Delta u_m \vert ^2_{L^2} + C(\epsilon )\vert u'_m \vert ^2_{L^2} \vert \nabla u_m \vert ^2_{L^2} + \epsilon _2 \vert u'_m \vert ^2_{L^2} + C(\epsilon _2) \vert f \vert ^2_{L^2}. \end{aligned}$$
(6.1)

Now taking \(v=-\Delta u_m\) in equation \((3)_1\), we obtain

$$\begin{aligned} (u'_m,-\Delta u_m)+ (a(u_m)\nabla u_m,\nabla (-\Delta u_m)) = (f,-\Delta u_m) \end{aligned}$$

since

$$\begin{aligned}\int _{\Omega } u'_m (-\Delta u_m)= \int _{\Omega } \nabla u'_m \nabla u_m = \frac{1}{2} \frac{d}{dt}\int _{\Omega } \vert \nabla u_m \vert ^2 = \frac{1}{2} \frac{d}{dt}\Vert u_m \Vert ^2\end{aligned}$$

and

$$\begin{aligned} \int _{\Omega } a(u_m)\nabla u_m \nabla (-\Delta u_m)= & {} - \int _{\Omega } \nabla \cdot (a(u_m)\nabla u_m)(-\Delta u_m) \\= & {} -\int _{\Omega } (\frac{da}{du}(u_m)\nabla u_m \nabla u_m + a(u_m) \Delta u_m)(-\Delta u_m) \\= & {} \int _{\Omega } \frac{da}{du}(u_m)\vert \nabla u_m \vert ^2 \Delta u_m + a(u_m)\vert \Delta u_m)\vert ^2 \end{aligned}$$

substituting

$$\begin{aligned} \frac{1}{2}\frac{d}{dt}\Vert u_m \Vert ^2 + \int _{\Omega } a(u_m)\vert \Delta u_m\vert ^2= & {} - \int _{\Omega } \frac{da}{du}(u_m)\vert \nabla u_m \vert ^2 \Delta u_m + (f,-\Delta u_m) \\= & {} I_1 + I_2 \,. \end{aligned}$$

On the other hand, from hypothesis (H2), we have the following inequality:

$$\begin{aligned} \vert I_1 \vert\le & {} M \int _{\Omega }\vert \nabla u_m \vert \vert \nabla u_m \vert \vert \Delta u_m \vert \nonumber \\\le & {} C\vert \nabla u_m \vert _{L^4} \vert \nabla u_m \vert _{L^4} \vert \Delta u_m \vert _{L^2} \nonumber \\\le & {} C\vert \nabla u_m \vert _{L^2} \vert \nabla u_m \vert _{H^1} \vert \Delta u_m \vert _{L^2} \nonumber \\\le & {} C\vert \nabla u_m \vert _{L^2} \vert u_m \vert _{H^2} \vert \Delta u_m \vert _{L^2} \nonumber \\\le & {} C\vert \nabla u_m \vert _{L^2} \vert \Delta u_m \vert _{L^2} \vert \Delta u_m \vert _{L^2} \nonumber \\\le & {} \epsilon \vert \Delta u_m \vert ^2_{L^2} + C(\epsilon )\vert \nabla u_m \vert ^2_{L^2} \vert \Delta u_m \vert ^2_{L^2} \,, \nonumber \\ \vert I_2 \vert\le & {} \int _{\Omega } \vert f \vert \vert \Delta u_m \vert \nonumber \\\le & {} \vert f \vert _{L^2} \vert \Delta u_m \vert _{L^2} \nonumber \\\le & {} \epsilon \vert \Delta u_m \vert ^2_{L^2} + C(\epsilon ) \vert f \vert ^2_{L^2} \,, \end{aligned}$$
(6.2)

substituting

$$\begin{aligned} \frac{1}{2}\frac{d}{dt}\Vert u_m \Vert ^2 + a_0 \vert \Delta u_m\vert ^2_{L^2} \le 2\epsilon \vert \Delta u_m \vert ^2_{L^2} + C(\epsilon )\vert \nabla u_m \vert ^2_{L^2} \vert \Delta u_m \vert ^2_{L^2} + C(\epsilon ) \vert f \vert ^2_{L^2} \,. \end{aligned}$$
(6.3)

From the estimates (6.1) and (6.3), we obtain

$$\begin{aligned} \begin{aligned} \displaystyle \frac{1}{2}\frac{d}{dt}\displaystyle&\left( \int _{\Omega }a(u_m)\vert \nabla u_m \vert ^2 + \Vert u_m \Vert ^2 \displaystyle \right) + \vert u'_m \vert ^2_{L^2} + a_0\vert \Delta u_m \vert ^2_{L^2} \\&\le \displaystyle 3\epsilon \vert \Delta u_m \vert ^2_{L^2} + C(\epsilon )\vert \nabla u_m \vert ^2_{L^2} \vert \Delta u_m \vert ^2_{L^2} + C \vert f \vert ^2_{L^2} + C(\epsilon )\vert u'_m \vert ^2_{L^2} \vert \nabla u_m \vert ^2_{L^2} + \epsilon _2 \vert u'_m \vert ^2_{L^2} \end{aligned} \end{aligned}$$
(6.4)

and consequently,

$$\begin{aligned} \begin{aligned} \displaystyle \frac{1}{2}\frac{d}{dt}\displaystyle \left( \int _{\Omega }a(u_m)\vert \nabla u_m \vert ^2 + \Vert u_m \Vert ^2 \displaystyle \right)&+ \frac{1}{2}\vert u'_m \vert ^2_{L^2} + \frac{a_0}{2}\vert \Delta u_m \vert ^2_{L^2} \\&\le \displaystyle C\vert \nabla u_m \vert ^2_{L^2} \vert \Delta u_m \vert ^2_{L^2} + C\vert u'_m \vert ^2_{L^2} \vert \nabla u_m \vert ^2_{L^2} + C \vert f \vert ^2_{L^2} \end{aligned} \end{aligned}$$
(6.5)
$$\begin{aligned} \begin{aligned} \displaystyle \frac{1}{2}\frac{d}{dt}\displaystyle \left( \int _{\Omega }a(u_m)\vert \nabla u_m \vert ^2 + \Vert u_m \Vert ^2 \displaystyle \right)&+ \frac{1}{4}\vert u'_m \vert ^2_{L^2} + \frac{a_0}{4}\vert \Delta u_m \vert ^2_{L^2} + \vert u'_m \vert ^2_{L^2}(\frac{1}{4} - C\Vert u_m \Vert ^2) \\&\displaystyle + \vert \Delta u_m \vert ^2 _{L^2}(\frac{a_0}{4}- C\Vert u_m \Vert ^2) \le C \vert f \vert ^2_{L^2} \,. \end{aligned} \end{aligned}$$
(6.6)

Now, if the initial data are sufficiently small, we obtain

$$\begin{aligned} \vert u'_m \vert ^2_{L^2}\Big {(}\frac{1}{4} - C\Vert u_m \Vert ^2\Big {)}>0 ~,~ \vert \Delta u_m \vert ^2 _{L^2}\Big {(}\frac{a_0}{4}- C\Vert u_m \Vert ^2 \Big {)}>0 \,. \end{aligned}$$

Integrating over (0, t), we obtain

$$\begin{aligned}{} & {} \begin{aligned} \displaystyle \frac{1}{2}\int _{\Omega }a(u_m(t))\vert \nabla u_m(t) \vert ^2&+ \frac{1}{2}\Vert u_m(t)\Vert ^2 + \frac{1}{4}\int ^t_0 \vert u'_m \vert ^2_{L^2} + \frac{a_0}{4}\int ^t_0 \vert \Delta u_m \vert ^2_{L^2} \\&\le \displaystyle \frac{1}{2}\int _{\Omega }a(u_m(0))\vert \nabla u_m(0) \vert ^2 + \frac{1}{2}\Vert u_m(0)\Vert ^2 + C\int ^T_0\vert f \vert ^2_{L^2} \end{aligned} \nonumber \\{} & {} \frac{a_0}{2}\Vert u_m(t) \Vert ^2 + \frac{1}{2}\Vert u_m(t)\Vert ^2 + \frac{1}{4}\int ^t_0 \vert u'_m \vert ^2_{L^2} + \frac{a_0}{4}\int ^t_0 \vert \Delta u_m \vert ^2_{L^2} \le \frac{a_1}{2}\Vert u_0 \Vert ^2 + \frac{1}{2}\Vert u_0 \Vert ^2 + C\int ^T_0\vert f \vert ^2_{L^2} \nonumber \\{} & {} \vert u_m \vert _{L^{\infty }(0,T;H^1_0)} + \vert u'_m \vert _{L^2(0,T;L^2)} + \vert u_m \vert _{L^2(0,T;H^2)} \le C( \Vert u_0 \Vert + \vert f \vert _{L^2(Q)}). \end{aligned}$$
(6.7)

\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero Oblitas, O.N., Ferrel, J.B.L. & de Carvalho, P.P. Nash equilibria for quasi-linear parabolic problems. Comp. Appl. Math. 43, 112 (2024). https://doi.org/10.1007/s40314-024-02616-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-024-02616-7

Keywords

Mathematics Subject Classification

Navigation