Skip to main content
Log in

Numerical algorithms for spline interpolation on space of probability density functions

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper addresses the problem of spline interpolations on \(\mathcal {P}\), the space of probability density functions when only a few observations \(p_i \in \mathcal {P}\) are available. Given a finite set of \(n+1\) distinct time instants \(t_i\) and corresponding data points \(p_i \in \mathcal {P}\), we consider the general problem of estimating a spline as a special regularized function \(\gamma \) on \(\mathcal {P}\) with \(\gamma (t_i)=p_i\). In particular, we focus on estimating missing data using smooth temporal splines to overcome the discrete nature of observations. In addition to generalizing splines on \(\mathcal {P}\) with minimal squared-norm of the acceleration, we give numerical schemes for solving \(C^1\) and \(C^2\) splines from data points \(p_i \in \mathcal {P}\). The two solutions are then shown to be computationally efficient, geometrically simpler, extensible, and can be transposed to other spaces and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  • Ay N, Jost J, Le H, Schwachhöfer L (2017) Information geometry. Springer, Cham

    Book  MATH  Google Scholar 

  • Bardsley J, Cui T, Marzouk Y, Wang Z (2020) Scalable optimization-based sampling on function space. SIAM J Sci Comput 42(2):A1317–A1347

    Article  MathSciNet  MATH  Google Scholar 

  • Bogfjellmo G, Modin K, Verdier O (2018) Numerical algorithm for \(c^{2}\)-splines on symmetric spaces. SIAM J Numer Anal 56(4):2623–2647

    Article  MathSciNet  MATH  Google Scholar 

  • Celledoni E, Eidnes S, Owren B, Ringholm T (2018) Dissipative numerical schemes on riemannian manifolds with applications to gradient flows. SIAM J Sci Comput 40(6):A3789–A3806

    Article  MathSciNet  MATH  Google Scholar 

  • Cencov N (1982) Statistical decision rules and optimal inference. Translations of Mathematical Monographs, 53

  • Crouch P, Kun G, Silva Leite F (1999) The de Casteljau algorithm on lie groups and spheres. J Dyn Control Syst 5:397–429

    Article  MathSciNet  MATH  Google Scholar 

  • de Casteljau P (1959) Outillages méthodes de calcul. Technical Report, André Citroën Automobiles, Paris

    Google Scholar 

  • Friedrich T (1991) Die fisher-information und symplektische strukturen. Math Nachr 153:273–296

    Article  MathSciNet  MATH  Google Scholar 

  • Kahl K, Rottmann M (2018) Least angle regression coarsening in bootstrap algebraic multigrid. SIAM J Sci Comput 40(6):A3928–A3954

    Article  MathSciNet  MATH  Google Scholar 

  • Kwang-Rae K, Ian L, Huiling L, Severn K (2020) Smoothing splines on Riemannian manifolds with applications to 3d shape space. CoRR, abs/1801.04978

  • Lancaster P, Lancaster D, Šalkauskas K (1986) Curve and surface fitting: an introduction. Academic Press, Computational mathematics and applications

    MATH  Google Scholar 

  • Lin L, StThomas B, Zhu H, Dunson D (2017) Extrinsic local regression on manifold-valued data. J Am Stat Assoc 112(519):1261–1273

    Article  MathSciNet  Google Scholar 

  • Machado L, Silva Leite F (2006) Fitting smooth paths on Riemannian manifolds. Int J Appl Math Stat 06(4):25–53

    MathSciNet  MATH  Google Scholar 

  • Petersen A, Müller H (2019) Fréchet regression for random objects with Euclidean predictors. Ann Stat 47(2):691–719

    Article  MATH  Google Scholar 

  • Popiel T, Noakes L (2006) \(c^{2}\) spherical Bézier splines. Comput Aided Geom Des 23:261–275

    Article  MATH  Google Scholar 

  • Popiel T, Noakes L (2007) Bézier curves and c2 interpolation in riemannian manifolds. J Approx Theory 148(2):111–127

    Article  MathSciNet  MATH  Google Scholar 

  • Rao C (1945) Information and accuracy attainable in the estimation of statistical parameters. Bull Calcutta Math Soc 37:81–89

    MathSciNet  MATH  Google Scholar 

  • Sabine L, Michael W (2019) Iterative solution of saddle-point systems from radial basis function (rbf) interpolation. SIAM J Sci Comput 41(3):A1706–A1732

    Article  MathSciNet  MATH  Google Scholar 

  • Samir C, Absil P-A, Srivastava A, Klassen E (2012) A gradient-descent method for curve fitting on Riemannian manifolds. Found Comput Math 12:49–73

    Article  MathSciNet  MATH  Google Scholar 

  • Shingel T (2009) Interpolation in special orthogonal groups. IMA J Numer Anal 29(3):731–745

    Article  MathSciNet  MATH  Google Scholar 

  • Srivastava A, Klassen E (2016) Functional and shape data analysis. Springer Series in Statistics

  • Wallner J, Nava Yazdani E, Grohs P (2007) Smoothness properties of lie group subdivision schemes. Multiscale Model Simul 6(2):493–505

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the handling editor Jose Alberto Cuminato and two referees for their detailed comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ines Adouani.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Communicated by Jose Alberto Cuminato.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1. \(C^{2}\) Bèzier spline on \(\mathbb {R}^{m}\)

Let us consider the Euclidean case \(\mathbb {R}^{m}\). Given a list of \((n+1)\) interpolation points \(p_{0},...,p_{n}\) and the control points \({\widehat{b}}_{i}^{+}\) and \({\widehat{b}}_{i}^{-}\) in the right and in the left of \(p_{i}\), \(i=0,...,n\). The \(C^{1}\) differentiability condition at knots \(p_{i}\) allows us to express control points \({\widehat{b}}_{i}^{+}\) in terms of \({\widehat{b}}_{i}^{-}\) as:

$$\begin{aligned} {\widehat{b}}_{1}^{+}&= \frac{5}{3}p_{1}-\frac{2}{3}{\widehat{b}}_{1}^{-}, \end{aligned}$$
(36)
$$\begin{aligned} {\widehat{b}}_{i}^{+}&= 2p_{i}-{\widehat{b}}_{i}^{-},i=2,...,n-2 \end{aligned}$$
(37)
$$\begin{aligned} {\widehat{b}}_{n-1}^{+}&= \frac{5}{2}p_{n-1}-\frac{3}{2}{\widehat{b}}_{n-1}^{-}, \end{aligned}$$
(38)

Hence, the task now is reduced to search only control points \({\widehat{b}}_{i}^{-}\), for \(i=1,...,n-1\), that generate the \(C^{1}\) Bézier spline \(\beta \) in \(\mathbb {R}^{m}\). Replacing the new optimization variables in problem (2) gives (24), which is merely the problem of minimization of the mean square acceleration of the Bézier curve \(\beta \) in the Euclidean space \(\mathbb {R}^{m}\). The optimal solution \(Y=[{\widehat{b}}_{1}^{-},...,{\widehat{b}}_{n-1}^{-}]^{T} \in \mathbb {R}^{ (n-1) \times m}\) of that problem is the unique solution of a tridiagonal linear system

$$\begin{aligned} Y = A^{-1}CP = DP \; \text {with} \; \sum _{j=0}^{j=n+1}d_{ij}=1. \end{aligned}$$
(39)

where A is a tridiagonal sparse square matrix of size \((n-1)\times (n-1)\) with a dominant diagonal, C a matrix of size \((n-1)\times (n+1)\) and P the matrix of \(p_i\)’s of size \((n+1)\times m\) given by:

$$\begin{aligned} A_{(1,1:2)}&= [16 \; 6] \end{aligned}$$
(40)
$$\begin{aligned} A_{(2,1:3)}&=[6 \; 36 \; 9] \end{aligned}$$
(41)
$$\begin{aligned} A_{(i,i-1:i+1)}&= [9 \; 36 \;9], \; \end{aligned}$$
(42)
$$\begin{aligned} A_{(n-1,n-2:n-1)}&=[9 \; 36] \end{aligned}$$
(43)
$$\begin{aligned} C_{(1,1:2)}&= [16 \; 6] \end{aligned}$$
(44)
$$\begin{aligned} C_{(2,2:3)}&=[6 \; 36 \; 9] \end{aligned}$$
(45)
$$\begin{aligned} C_{(i,i:i+1)}&= [9 \; 36 \; 9], \; i=3,...,n-2 \end{aligned}$$
(46)
$$\begin{aligned} C_{(n-1,n-1:n+1)}&=[9 \; 36] \end{aligned}$$
(47)

We may now write the \(C^{2}\) differentiability condition. It is obvious that with this \(C^{2}\) condition the position of the control points \({\widehat{b}}_{i}^{-}\) and \({\widehat{b}}_{i}^{+}\) that generate the curve \(\beta \) will be modified. Therefore, it is more convenient to use another notation. Let us denote by \(b^{-}_{i}\) and \(b^{+}_{i}\) the new control points on the left and on the right hand side of the interpolation point \(p_{i}\), for \(i=1,...,n-1\). Computing the acceleration of \(\beta \) on respective intervals and taking into account that \(\beta \) is \(C^{1}\), we shall replace \(b_{1}^{+}\) by (36), \(b_{i}^{+}\) by (37), and \(b_{n-1}^{+}\) by (38). We deduce that:

$$\begin{aligned} b_{2}^{-}&= \frac{1}{3}p_{0}-\frac{1}{2}b_{1}^{-}+\frac{8}{3}p_{1}, \end{aligned}$$
(48)
$$\begin{aligned} b_{i+1}^{-}&= b_{i-1}^{+}+4p_{i}-4b_{i}^{-}, i=2,...,n-2 \end{aligned}$$
(49)
$$\begin{aligned} p_{n}&= 2p_{n-1}+ 2b_{n-1}^{+}-6b_{n-1}^{-}+3b_{n-2}^{+}, \end{aligned}$$
(50)

We see at once that points that will be modified by the additional \(C^{2}\) condition are \({\widehat{b}}_{i}^{-}\) and hence \({\widehat{b}}_{i}^{+}\), for \(i=2,...,n-1\). The point \({\widehat{b}}_{1}^{-}\) remains invariant and consequently it will be the case for \({\widehat{b}}_{1}^{+}\). According to the \(C^{1}\) differentiability condition ensured at the first step, one can take \(b_{1}^{-}={\widehat{b}}_{1}^{-}\), with \({\widehat{b}}_{1}^{-}\) is the first row of the matrix Y obtained as a solution of the optimization problem (24). However, the endpoint \(p_{n}\) is affected as we can deduce from Eq. (50). Nevertheless, it follows that giving the control point \(b_{1}^{-}\) allows us to find all the other control points including \(b_{2}^{-}\) with Eq. (48) and hence \(b_{2}^{+}\) with (37), then \(b_{i+1}^{-}\) for \(i=2,...,n-2\) with (49) and therefore \(b_{i}^{+}\), for \(i=3,...,n-2\) with (37) and \(b_{n-1}^{+}\) with (38).

Appendix 2. Proof of Theorem 3

We now prove Theorem 3. The proof is based on the following two results given in Popiel and Noakes (2007).

Lemma 1

Let \(\psi _{1} \in \mathcal {M}\).

  1. (i)

    \((d\varphi _{\psi _{1}})_{\psi _{2}}^{-1} = (d\varphi _{\psi _{1}})_{\varphi _{\psi _{1}}(\psi _{2})}, \; \text {for all} \; \psi _{2} \in \mathcal {M} \).

  2. (ii)

    \((d\varphi _{\psi _{1}})_{ \text {Exp}_{\psi _{1}}(H)} \circ (d \text {Exp}_{\psi _{1}})_{H} = - (d \text {Exp}_{\psi _{1}})_{-H} \; \text {for all} \; H \in T_{\psi _{1}} \mathcal {M}\).

Theorem 5

Let \(t \longrightarrow \sigma _{j}(t,V_{0},...,V_{j}) \) be the Bézier curve of order j on \(\mathcal {M}\) with a number of control points \(V_{j}\) for \(i=0,...,j\). Then, \(\sigma _{j}(t; V_{0},...,V_{j})\) satisfies:

  1. i)

    \(\frac{D}{\textrm{d}t}|_{t=0} \; {\dot{\sigma }}_{j}(t; V_{0},...,V_{j})= j(j-1)\varOmega _{0}\), where

    $$\begin{aligned} {\varOmega _{0}:=} \left\{ \begin{array}{ll} {\dot{\alpha }}(0,V_{1},V_{2}), &{} if\,V_{0}=V_{1} \\ \ (d\text {Exp}_{V_{0}})^{-1}_{{\dot{\alpha }}(0,V_{0},V_{1})}\left( {\dot{\alpha }} (0,V_{1},V_{2})-{\dot{\alpha }}(1,V_{0},V_{1}) \right) , &{} if\,V_{0}\ne V_{1} \ \end{array}\right. \end{aligned}$$
  2. ii)

    \(\frac{D}{\textrm{d}t}|_{t=1} \; {\dot{\sigma }}_{j}(t; V_{0},...,V_{j})= j(j-1)\varOmega _{j}\), where

    $$\begin{aligned} {\varOmega _{j}:=} \left\{ \begin{array}{ll} -{\dot{\alpha }}(0,V_{j-2},V_{j-1}), &{} if\,V_{j-1}=V_{j} \ \\ (d\text {Exp}_{V_{j}})^{-1}_{-{\dot{\alpha }}(1,V_{j-1},V_{j})}\left( {\dot{\alpha }}(0,V_{j-1},V_{j}) -{\dot{\alpha }}(1,V_{j-2},V_{j-1}) \right) , &{} if\,V_{j-1}\ne V_{j} \ \end{array}\right. \end{aligned}$$

We will exploit a modified form of the Theorem 5 to obtain the proof of the Theorem 3.

Proof of Theorem 3

Part i) follows from theorem 2. We now prove ii). The Bézier curve \(\sigma \) is \(C^{2}\) on \(\mathcal {M}\) if and only if it satisfies the \(C^{2}\) differentiability condition at joint points \(\tilde{\psi _{i}}\), for \(i=1,...,n-1\). At the point \(\tilde{\psi _{1}}\), this means:

$$\begin{aligned} \frac{D}{\textrm{d}t}|_{t=1} \; {\dot{\sigma }}_{2}(t;\tilde{\psi _{0}},\chi _{1}^{-},\tilde{\psi _{1}}) = \frac{D}{\textrm{d}t}|_{t=0} \; {\dot{\sigma }}_{3}(t;\tilde{\psi _{1}},\chi _{1}^{+}, \chi _{2}^{-},\tilde{\psi _{2}}). \end{aligned}$$
(51)

Applying Theorem. 5 yields: \(\sigma \) is \(C^{2}\) on \(\tilde{\psi _{1}}\) if and only if \(\varOmega _{2}-3\varOmega _{0}=0\) with:

$$\begin{aligned} \varOmega _{2}-3\varOmega _{0}&= (d \text {Exp}_{\tilde{\psi _{1}}})^{-1}_{-{\dot{\alpha }}(1,\chi _{1}^{-},\tilde{\psi _{1}})} \left( {\dot{\alpha }}(0,\chi _{1}^{-},\tilde{\psi _{1}})-{\dot{\alpha }}(1,\tilde{\psi _{0}},\chi _{1}^{-}) \right) \nonumber \\&- 3 (d \text {Exp}_{\tilde{\psi _{1}}})^{-1}_{{\dot{\alpha }}(0,\tilde{\psi _{1}},\chi _{1}^{+})} \left( {\dot{\alpha }}(0,\chi _{1}^{+},\chi _{2}^{-})-{\dot{\alpha }}(1,\tilde{\psi _{1}},\chi _{1}^{+}) \right) . \end{aligned}$$
(52)

Since \(\beta _{1}\) is a \(C^{1}\) Bézier curve on \(T_{\psi _{1}}\mathcal {M}\), we get that \({\dot{\alpha }}(1,\chi _{1}^{-},\tilde{\psi _{1}}) = {\dot{\alpha }}(0,\tilde{\psi _{1}},\chi _{1}^{+})\). By Lemma 1, we have

$$\begin{aligned}&(d \text {Exp}_{\tilde{\psi _{1}}})^{-1}_{{\dot{\alpha }}(0,\tilde{\psi _{1}},\chi _{1}^{+})} \left( {\dot{\alpha }}(0,\chi _{1}^{+},\chi _{2}^{-})-{\dot{\alpha }}(1,\tilde{\psi _{1}},\chi _{1}^{+}) \right) \\&= - (d \text {Exp}_{\tilde{\psi _{1}}})^{-1}_{-{\dot{\alpha }}(0,\tilde{\psi _{1}},\chi _{1}^{+})} \left( (\textrm{d}\varphi _{\tilde{\psi _{1}}})_{\chi _{1}^{+}} \left( {\dot{\alpha }}(0,\chi _{1}^{+},\chi _{2}^{-})-{\dot{\alpha }}(1,\tilde{\psi _{1}},\chi _{1}^{+}) \right) \right) . \end{aligned}$$

It follows that

$$\begin{aligned} \begin{array}{l} \varOmega _{2}-3\varOmega _{0}\\ =(d\text {Exp}_{\tilde{\psi _{1}}})^{-1}_{-{\dot{\alpha }}(0,\tilde{\psi _{1}},\chi _{1}^{+})} \left( {\dot{\alpha }}(0,\chi _{1}^{-}, \tilde{\psi _{1}})-{\dot{\alpha }}(1,\tilde{\psi _{0}},\chi _{1}^{-}) \right) \\ +3(d\text {Exp}_{\tilde{\psi _{1}}})^{-1}_{-{\dot{\alpha }}(0,\tilde{\psi _{1}},\chi _{1}^{+})} \left( (\textrm{d}\varphi _{\tilde{\psi _{1}}})_{\chi _{1}^{+}} \left( {\dot{\alpha }}(0,\chi _{1}^{+},\chi _{2}^{-})-{\dot{\alpha }}(1,\tilde{\psi _{1}},\chi _{1}^{+}) \right) \right) \\ =(d\text {Exp}_{\tilde{\psi _{1}}})^{-1}_{-{\dot{\alpha }}(0,\tilde{\psi _{1}},\chi _{1}^{+})}\Bigg [ 3(\textrm{d}\varphi _{\tilde{\psi _{1}}})_{\chi _{1}^{+}} \left( {\dot{\alpha }}(0,\chi _{1}^{+},\chi _{2}^{-}) \right) - 3 (\textrm{d}\varphi _{\tilde{\psi _{1}}})_{\chi _{1}^{+}} \left( {\dot{\alpha }}(1,\tilde{\psi _{1}},\chi _{1}^{+}) \right) \\ + {\dot{\alpha }}(0,\chi _{1}^{-},\tilde{\psi _{1}})-{\dot{\alpha }}(1,\tilde{\psi _{0}},\chi _{1}^{-}) \Bigg ]. \end{array} \end{aligned}$$

Hence, \(\varOmega _{2}-3\varOmega _{0}=0\) if and only if

$$\begin{aligned} \begin{array}{l} = 3(\textrm{d}\varphi _{\tilde{\psi _{1}}})_{\chi _{1}^{+}} \left( {\dot{\alpha }}(0,\chi _{1}^{+},\chi _{2}^{-}) \right) - 3 (\textrm{d}\varphi _{\tilde{\psi _{1}}})_{\chi _{1}^{+}} \left( {\dot{\alpha }}(1,\tilde{\psi _{1}},\chi _{1}^{+}) \right) \\ + {\dot{\alpha }}(0,\chi _{1}^{-},\tilde{\psi _{1}})-{\dot{\alpha }}(1,\tilde{\psi _{0}},\chi _{1}^{-}) = 0 \end{array} \end{aligned}$$

Nevertheless \( \varphi _{\tilde{\psi _{1}}} \left( \alpha (t,\tilde{\psi _{1}},\chi _{1}^{+}) \right) = \alpha (1-t,\chi _{1}^{-},\tilde{\psi _{1}}), \; \forall t\in [0,1] \). Differentiate this identity with respect to t, we obtain

$$\begin{aligned} (\textrm{d}\varphi _{\tilde{\psi _{1}}})_{\chi _{1}^{+}} \left( {\dot{\alpha }}(1,\tilde{\psi _{1}},\chi _{1}^{+}) \right) =-{\dot{\alpha }}(0,\chi _{1}^{-},\tilde{\psi _{1}}). \end{aligned}$$

Accordingly, Eqn. ( ) becomes

$$\begin{aligned} 3(\textrm{d}\varphi _{\tilde{\psi _{1}}})_{\chi _{1}^{+}} \left( {\dot{\alpha }}(0,\chi _{1}^{+},\chi _{2}^{-}) \right)= & {} {\dot{\alpha }}(1,\tilde{\psi _{0}},\chi _{1}^{-}) -4 {\dot{\alpha }}(0,\chi _{1}^{-}, \tilde{\psi _{1}}). \end{aligned}$$
(53)

Now, Lemma. 1 shows that

$$\begin{aligned} (\textrm{d}\varphi _{\tilde{\psi _{1}}})_{\chi _{1}^{+}}\left( {\dot{\alpha }}(0,\chi _{1}^{+},\chi _{2}^{-}) \right)= & {} (\textrm{d}\varphi _{\tilde{\psi _{1}}})_{\varphi _{\tilde{\psi _{1}}}(\chi _{1}^{-})} \left( {\dot{\alpha }}(0,\chi _{1}^{+},\chi _{2}^{-})\right) \\= & {} (\textrm{d}\varphi _{\tilde{\psi _{1}}})_{\chi _{1}^{-}}^{-1} \left( {\dot{\alpha }}(0,\chi _{1}^{+},\chi _{2}^{-}) \right) . \end{aligned}$$

It follows that \((\textrm{d}\varphi _{\tilde{\psi _{1}}})_{\chi _{1}^{-}}^{-1} \left( {\dot{\alpha }}(0,\chi _{1}^{+},\chi _{2}^{-})\right) = \frac{1}{3} \left( {\dot{\alpha }}(1,\tilde{\psi _{0}},\chi _{1}^{-}) -4 {\dot{\alpha }}(0,\chi _{1}^{-}, \tilde{\psi _{1}}) \right) \).

Consequently, with the exponential map at the point \(\chi _{1}^{+}\), we get

$$\begin{aligned} \chi _{2}^{-}= & {} \text {Exp}_{\chi _{1}^{+}}\left( \frac{1}{3} \left( (\textrm{d}\varphi _{\tilde{\psi _{1}}})_{\chi _{1}^{-}} \left( {\dot{\alpha }}(1,\tilde{\psi _{0}},\chi _{1}^{-}) \right) - 4{\dot{\alpha }}(0,\chi _{1}^{-},\tilde{\psi _{1}})\right) \right) . \end{aligned}$$
(54)

The proof of Part iii) follows in much the same way as Part ii). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adouani, I., Samir, C. Numerical algorithms for spline interpolation on space of probability density functions. Comp. Appl. Math. 42, 127 (2023). https://doi.org/10.1007/s40314-023-02262-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-023-02262-5

Keywords

Mathematics Subject Classification

Navigation