Skip to main content
Log in

The symmetric solution of the matrix equation \(AXB=D\) on subspace

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

Let \(\Omega =\{ z \in {\mathbb {R}}{^n}|Gz=0,G\in {\mathbb {R}}^{k \times n}\}\) and \(\mathbb{S}\mathbb{R}_\Omega ^{n \times n}=\{A\in {\mathbb {R}}^{n\times n}|(Ax,y)=(x,Ay),\forall x,y \in \Omega \}\). In this paper, we first consider the following problem (Problem 1): Given \(A\in {\mathbb {R}}^{m\times n}\), \(B\in \mathbb {R}^{n \times q }\) and \(D\in \mathbb {R}^{m \times q }\), find \(X\in \mathbb{S}\mathbb{R}_\Omega ^{n \times n}\) such that \(AXB=D\). Further, we consider an associated optimal approximation problem: Given \({\tilde{X}} \in {\mathbb {R}}^{n\times n}\), find \({\hat{X}}\in S_E\) such that \( \Vert \hat{X} - \tilde{X}\Vert ={\min \limits _{X\in S_E}}\Vert X - {\tilde{X}}\Vert \), where \(S_E\) is the solution set of Problem 1. The solvability conditions and the representation of the general solution of Problem 1 are derived by using the generalized inverses, and then, the unique approximation solution \({\hat{X}}\) of the optimal approximation problem are deduced by applying the Kronecker product of matrices. Finally, two numerical examples are presented to show the correctness of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avdonin SA, Belishev MI, Ivanov SA (1992) Boundary control and a matrix inverse problem for the equation. Math USSR-Sbornik 72(2):287–310

    Article  MathSciNet  MATH  Google Scholar 

  • Braden HW (1998) The equations \(A^\top X\pm X^\top A=B\). SIAM J Appl Math 20(2):295–302

    Article  MATH  Google Scholar 

  • Chen J-L, Chen X-H (2002) Special matrices. Tsinghua University Press, Beijing (In Chinese)

    Google Scholar 

  • Cheney EW (1982) Introduction to approximation theory. AMS Chelsea Publishing, Providence

    MATH  Google Scholar 

  • Cvetković-Ilić DS (2008a) Re-nnd solutions of the matrix equation \(AXB=C\). J Aust Math Soc 84:63–72

  • Cvetković-Ilić DS (2008b) The solutions of some operator equations. J Korean Math Soc 45(5):1417–1425

  • Deng Y-B, Bai Z-Z, Gao Y-H (2006) Iterative orthogonal direction methods for Hermitian minimum norm solutions of two consistent matrix equations. Numer Linear Algebra Appl 13(10):801–823

    Article  MathSciNet  MATH  Google Scholar 

  • Dong B, Lin MM, Chu MT (2009) Parameter reconstruction of vibration systems from partial eigeninformation. J Sound Vib 327:391–401

    Article  Google Scholar 

  • Khatri CG, Mitra SK (1976) Hermitian and nonnegative definite solutions of linear matrix equations. SIAM J Appl Math 31(4):579–585

    Article  MathSciNet  MATH  Google Scholar 

  • Lancaster P, Tismenetsky M (1985) The theory of matrices, 2nd edn. Academic Press, New York

    MATH  Google Scholar 

  • Lei Y, Liao A-P, Zhang L (2007) Minimization problem for symmetric orthogonal anti-symmetric matrices. J Comput Math 25(2):211–220

    MathSciNet  MATH  Google Scholar 

  • Liao A-P, Bai Z-Z (2002) The constrained solutions of two matrix equations. Acta Math Sin Engl Ser 18(4):671–678

    Article  MathSciNet  MATH  Google Scholar 

  • Liao A-P, Bai Z-Z (2003) Least-squares solution of \(AXB=D\) over symmetric positive semidefinite matrices \(X\). J Comput Math 21(2):175–182

    MathSciNet  MATH  Google Scholar 

  • Liao A-P, Bai Z-Z, Lei Y (2005) Best approximate solution of matrix equation \(AXB+CYD=E\). SIAM J Matrix Anal Appl 27(3):675–688

    Article  MathSciNet  MATH  Google Scholar 

  • Liu X, Wang Q-W (2017) The least squares Hermitian (anti)reflexive solution with the least norm to matrix equation \(AXB=C\). Math Probl Eng 2017:1–6

    MathSciNet  Google Scholar 

  • Peng Z-Y (2005) An iteration method for the least squares symmetric solution of the linear matrix equation \(AXB=C\). Appl Math Comput 170:711–723

    Article  MathSciNet  MATH  Google Scholar 

  • Peng Y-X, Hu X-Y, Zhang L (2005) An iteration method for the symmetric solutions and the optimal approximation solution of the matrix equation \(AXB=C\). Appl Math Comput 160:763–777

    Article  MathSciNet  MATH  Google Scholar 

  • Rogers GS (1980) Matrix derivatives. Lecture notes in statistics, vol 2. Marcel Dekker, Inc, New York

    Google Scholar 

  • Tian Y-G (2000) The solvability of two linear matrix equations. Linear Multilinear Algebra 48(2):123–147

    Article  MathSciNet  MATH  Google Scholar 

  • Udwadia FE (2005) Structural identification and damage detection from noisy modal data. J Aerosp Eng 18:179–187

    Article  Google Scholar 

  • Wonham WM (1979) Linear multivariable control: a geometric approach. Springer, New York

    Book  MATH  Google Scholar 

  • Young PD, Young DM, Young MM (2017) A general Hermitian nonnegative-definite solution to the matrix equation \(AXB=C\). Adv Linear Algebra Matrix Theory 7:7–17

    Article  Google Scholar 

  • Yuan Y-X (1998) On the symmetric solutions of a class of linear matrix equation. J Eng Math 15(3):25–29 (In Chinese)

    MathSciNet  MATH  Google Scholar 

  • Yuan Y-X (2009) A symmetric inverse eigenvalue problem in structural dynamic model updating. Appl Math Comput 213:516–521

    Article  MathSciNet  MATH  Google Scholar 

  • Yuan Y-X, Dai H (2005) A class of inverse problem for matrices on subspace. Numer Math A J Chin Univ 27(1):69–76 (In Chinese)

    MathSciNet  Google Scholar 

  • Yuan Y-X, Dai H (2008) Generalized reflexive solutions of the matrix equation \(AXB=D\) and an associated optimal approximation problem. Comput Math Appl 56:1643–1649

    Article  MathSciNet  MATH  Google Scholar 

  • Yuan Y-X, Dai H (2012) An inverse problem for undamped gyroscopic systems. J Comput Appl Math 236:2574–2581

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang X (2004) Hermitian nonnegative-definite and positive-definite solutions of the matrix equation \(AXB=C\). Appl Math E-Notes 4:40–47

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the editor and the anonymous reviewers for their helpful comments and suggestions, which have improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongxin Yuan.

Additional information

Communicated by Jinyun Yuan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Yuan, Y. The symmetric solution of the matrix equation \(AXB=D\) on subspace. Comp. Appl. Math. 41, 373 (2022). https://doi.org/10.1007/s40314-022-02093-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-02093-w

Keywords

Mathematics Subject Classification

Navigation