Skip to main content
Log in

Necessary conditions for Turing instability in the reaction–diffusion systems associated with replicator dynamics

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

Spatial pattern formation via Turing instability in the reaction–diffusion system associated with the replicator dynamics is concerned with the long-term effects of perturbations, whereas the notion of reactivity describes the transient behaviour of perturbations to an asymptotically stable equilibrium point. This article establishes the connection between these two concepts—Turing instability and reactivity—in the context of the reaction–diffusion system associated with game replicator dynamics. In particular, we show that for Turing instability to occur in the reaction–diffusion system, the smallest diffusion coefficient of the system must be strictly less than the ratio of positive reactivity of the stable equilibrium point and square of wavenumber. This connection is also explored in terms of elements of the symmetric part of the associated stability matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Cressman R, Vickers GT (1997) Spatial and density effects in evolutionary game theory. J Theor Biol 184(4):359–369

    Article  Google Scholar 

  • Gantmakher FR (1998) The theory of matrices, vol 131. American Mathematical Society, Providence

    Google Scholar 

  • Hofbauer J, Sigmund K et al (1998) Evolutionary games and population dynamics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Johnson CR, Horn RA (1985) Matrix analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Murray JD (2007) Mathematical biology: I. An introduction, vol 17. Springer Science & Business Media, New York

    Google Scholar 

  • Nanda M, Durrett R (2017) Spatial evolutionary games with weak selection. Proc Natl Acad Sci 114(23):6046–6051

    Article  MathSciNet  Google Scholar 

  • Neubert MG, Caswell H (1997) Alternatives to resilience for measuring the responses of ecological systems to perturbations. Ecology 78(3):653–665

    Article  Google Scholar 

  • Neubert MG, Caswell H, Murray JD (2002) Transient dynamics and pattern formation: reactivity is necessary for turing instabilities. Math Biosci 175(1):1–11

    Article  MathSciNet  Google Scholar 

  • Novozhilov AS, Posvyanskii VP, Bratus AS (2012) On the reaction-diffusion replicator systems: spatial patterns and asymptotic behaviour. Russ J Numer Anal Math Model 26(6):555–564

    Article  MathSciNet  Google Scholar 

  • Park HJ, Gokhale CS (2019) Ecological feedback on diffusion dynamics. R Soc Open Sci 6(2):181273

    Article  Google Scholar 

  • Qian H, Murray JD (2001) A simple method of parameter space determination for diffusion-driven instability with three species. Appl Math Lett 14(4):405–411

    Article  MathSciNet  Google Scholar 

  • Roca CP, Cuesta JA, Sánchez A (2009) Evolutionary game theory: temporal and spatial effects beyond replicator dynamics. Phys Life Rev 6(4):208–249

    Article  Google Scholar 

  • Schuster P, Sigmund K (1983) Replicator dynamics. J Theor Biol 100(3):533–538

    Article  MathSciNet  Google Scholar 

  • Smith JM (1974) The theory of games and the evolution of animal conflicts. J Theor Biol 47(1):209–221

    Article  MathSciNet  Google Scholar 

  • Smith JM (1982) Evolution and the theory of games. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Smith JM, Price GR (1973) The logic of animal conflict. Nature 246(5427):15–18

    Article  Google Scholar 

  • Taylor PD, Jonker LB (1978) Evolutionary stable strategies and game dynamics. Math Biosci 40(1–2):145–156

    Article  MathSciNet  Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Bull Math Biol 52(1):153–197

    MATH  Google Scholar 

  • Vickers GT (1989) Spatial patterns and ESS’s. J Theor Biol 140(1):129–135

    Article  MathSciNet  Google Scholar 

  • Vickers GT, Hutson VCL, Budd CJ (1993) Spatial patterns in population conflicts. J Math Biol 31(4):411–430

    Article  MathSciNet  Google Scholar 

  • Weibull JW (1997) Evolutionary game theory. MIT Press, Cambridge

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar.

Additional information

Communicated by Valeria Neves Domingos Cavalcanti.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Shaiju, A.J. Necessary conditions for Turing instability in the reaction–diffusion systems associated with replicator dynamics. Comp. Appl. Math. 41, 160 (2022). https://doi.org/10.1007/s40314-022-01861-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-01861-y

Keywords

Mathematics Subject Classification

Navigation