Skip to main content

Advertisement

Log in

Milne type inequality and interval orders

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we prove some Milne type inequalities for interval-valued functions and, along with it, we explore some connections with other inequalities. More precisely, using the Aumann integral and the Kulisch–Miranker order and including-order on the space of real and compact intervals, we establish some Milne type inequalities for interval-valued functions. Also, using different orders, we obtain some connections with Chebyshev, Cauchy–Schwarz, and Hölder inequality. Finally, some new ideas and results based on submodular measures are explored as well as some examples and applications are presented for illustrating our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agahi H, Román-Flores H, Flores-Franulič A (2011) General Barnes-Godunova-Levin type inequalities for Sugeno integral. Inf Sci 181:1072–1079

    Article  MathSciNet  Google Scholar 

  • Agahi H (2020) A refined Hölder’s inequality for Choquet expectation by Cauchy-Schwarz’s inequality. Inf Sci 512:929–934

    Article  Google Scholar 

  • Aubin JP, Cellina A (1984) Differential inclusions. Springer, New York

    Book  Google Scholar 

  • Aubin JP, Franskowska H (1990) Set-valued analysis. Birkhäuser, Boston

    Google Scholar 

  • Aubin JP, Franskowska H (2000) Introduction: set-valued analysis in control theory. Set Value Anal 8:1–9

    Article  Google Scholar 

  • Aumann RJ (1965) Integrals of set-valued functions. J Math Anal Appl 12:1–12

    Article  MathSciNet  Google Scholar 

  • Chalco-Cano Y, Flores-Franulič A, Román-Flores H (2012) Ostrowski type inequalities for inteval-valued functions using generalized Hukuhara derivative. Comput Appl Math 31:457–472

    MathSciNet  MATH  Google Scholar 

  • Chateauneuf A, Cohen M, Kast R (1997) Comonotone random variables in economics. A review of some results, GREQAM, Working Paper 97A07

  • Costa TM, Román-Flores H (2017) Some integral inequalities for fuzzy-interval-valued functions. Inf Sci 420:110–125

    Article  MathSciNet  Google Scholar 

  • Costa TM, Román-Flores H (2019a) Gauss-type integral inequalities for interval and fuzzy-interval-valued functions. Comput Appl Math 38:Article No 58

  • Costa TM, Román-Flores H, Chalco-Cano Y (2019b) Opial-type inequalities for interval-valued functions. Fuzzy Sets Syst 358:48–63

    Article  MathSciNet  Google Scholar 

  • Costa TM, Chalco-Cano Y, Román-Flores H (2020) Wirtinger-type integral inequalities for interval-valued functions. Fuzzy Sets Syst 396:102–114

    Article  MathSciNet  Google Scholar 

  • Denneberg D (1994) Non-additive measure and integral, 1st edn. Springer, Amsterdam, p 1994

    Book  Google Scholar 

  • Flores-Franulič A, Román-Flores H (2007) A Chebyshev type inequality for fuzzy integrals. Appl Math Comput 190:1178–1184

    MathSciNet  MATH  Google Scholar 

  • Flores-Franulič A, Román-Flores H, Chalco-Cano Y (2008) A note on fuzzy integral inequality of Stolarsky type. Appl Math Comput 196:55–59

    MathSciNet  MATH  Google Scholar 

  • Flores-Franulič A, Román-Flores H, Chalco-Cano Y (2009) Markov type inequalities for fuzzy integrals. Appl Math Comput 207:242–247

    MathSciNet  MATH  Google Scholar 

  • Girotto B, Holder S (2011) Chebyshev type inequality for Choquet integral and comonotonicity. Int J Approx Reason 52:1118–1123

    Article  MathSciNet  Google Scholar 

  • Kulisch U, Miranker W (1981) Computer arithmetic in theory and practice. Academic Press, New York

    MATH  Google Scholar 

  • Markov S (1979) Calculus for interval functions of a real variable. Computing 22:325–337

    Article  MathSciNet  Google Scholar 

  • Milne EA (1925) Note on Rosseland’s integral for the stellar absorption coefficient. Monthly Notices R Astron Soc 85:979–984

    Article  Google Scholar 

  • Mitrinović DS, Pečarić JE, Fink AM (1993) Classical and new inequalities in analysis. Mathematics and its applications. Kluwer Academic Publishers Group, Dordrecht

    MATH  Google Scholar 

  • Moore RE (1966) Interval analysis. Prince-Hall, Englewood Cliffs (NJ)

    MATH  Google Scholar 

  • Moore RE (1979) Method and application of interval analysis. SIAM, New York

    Book  Google Scholar 

  • Moore RE (1985) Computational functional analysis. Ellis Horwood Limited, England

    MATH  Google Scholar 

  • Moore RE, Kearfott RB, Cloud MJ (2009) Introduction to interval analysis. SIAM, USA

    Book  Google Scholar 

  • Pap E (1995) Null-additive set functions. Kluwer, Dordrecht

    MATH  Google Scholar 

  • Rokne JG (2001) Interval arithmetic and interval analysis: an introduction. In Granular Computing: An Emerging Paradigm, W. Pedrycz Ed.- Heldelberg; New York; Physica-Verlag, pp 1–22

  • Román-Flores H, Chalco-Cano Y (2006) H-continuity of fuzzy measures and set defuzzification. Fuzzy Sets Syst 157:230–242

    Article  MathSciNet  Google Scholar 

  • Román-Flores H, Flores-Franulič A, Chalco-Cano Y (2007a) The fuzzy integral for monotone functions. Appl Math Comput 185:492–498

    MathSciNet  MATH  Google Scholar 

  • Román-Flores H, Flores-Franulič A, Chalco-Cano Y (2007b) A Jensen type inequality for fuzzy integrals. Inf Sci 177:3192–3201

    Article  MathSciNet  Google Scholar 

  • Román-Flores H, Flores-Franulič A, Chalco-Cano Y (2008a) A convolution type inequality for fuzzy integrals. Appl Math Comput 19:94–99

    MathSciNet  MATH  Google Scholar 

  • Román-Flores H, Flores-Franulič A, Chalco-Cano Y (2008b) A Hardy-type inequality for fuzzy integrals. Appl Math Comput 204:178–183

    MathSciNet  MATH  Google Scholar 

  • Román-Flores H, Flores-Franulič A, Chalco-Cano Y, Dan R (2013) A two-dimensional Hardy type inequality for fuzzy integrals. Int J Uncertain Fuzzy Knowl Based Syst 21:165–173

    Article  MathSciNet  Google Scholar 

  • Román-Flores H, Chalco-Cano Y, Lodwick W (2018) Some integral inequalities for interval-valued functions. Comput Appl Math 37:1306–1318

    Article  MathSciNet  Google Scholar 

  • Román-Flores H, Flores-Franulič A, Aguirre-Cipe I, Martínez-Romero M (2020) A Sugeno integral inequality of Carleman–Knopp type and some refinements. Fuzzy Sets Syst 396:72–81

    Article  MathSciNet  Google Scholar 

  • Wang Z, Klir G (2009) Generalized measure theory. Springer, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Flores-Franulič.

Additional information

Communicated by Rosana Sueli da Motta Jafelice.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by Conicyt-Chile through Projects Fondecyt 1190142.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Román-Flores, H., Ayala, V. & Flores-Franulič, A. Milne type inequality and interval orders. Comp. Appl. Math. 40, 130 (2021). https://doi.org/10.1007/s40314-021-01500-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-021-01500-y

Keywords

Mathematics Subject Classification

Navigation