Skip to main content
Log in

A transmission problem for the Timoshenko system with one local Kelvin–Voigt damping and non-smooth coefficient at the interface

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

A Correction to this article was published on 05 March 2022

This article has been updated

Abstract

In this paper, we study the indirect stability of Timoshenko system with local or global Kelvin–Voigt damping, under fully Dirichlet or mixed boundary conditions. Unlike Zhao et al. (Acta Mathematica Sinica Engl Ser 21(3):655–666, 2004), Tian and Zhang (Mathematik und Physik 68(1), 2017), and Liu and Zhang (SIAM J Control Optim 56(6):3919–3947, 2018), in this paper, we consider the Timoshenko system with only one locally or globally distributed Kelvin–Voigt damping D [see System (1.1)]. Indeed, we prove that the energy of the system decays polynomially of type \(t^{-1}\) and that this decay rate is in some sense optimal. The method is based on the frequency domain approach combining with multiplier method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

References

  • Abdallah F, Ghader M, Wehbe A (2018) Stability results of a distributed problem involving Bresse system with history and/or Cattaneo law under fully Dirichlet or mixed boundary conditions. Math Methods Appl Sci 41(5):1876–1907

    Article  MathSciNet  MATH  Google Scholar 

  • Akil M, Chitour Y, Ghader M, Wehbe A (2019) Stability and exact controllability of a Timoshenko system with only one fractional damping on the boundary. Asympt Anal 119:1–60

  • Alabau-Boussouira F (2004) A general formula for decay rates of nonlinear dissipative systems. Comptes Rendus Mathematique 338(1):35–40

    Article  MathSciNet  MATH  Google Scholar 

  • Ammar-Khodja F, Benabdallah A, Rivera JM, Racke R (2003) Energy decay for Timoshenko systems of memory type. J Differ Equ 194(1):82–115

    Article  MathSciNet  MATH  Google Scholar 

  • Ammar-Khodja F, Kerbal S, Soufyane A (2007) Stabilization of the nonuniform Timoshenko beam. J Math Anal Appl 327(1):525–538

    Article  MathSciNet  MATH  Google Scholar 

  • Araruna FD, Zuazua E (2008) Controllability of the Kirchhoff system for beams as a limit of the Mindlin–Timoshenko system. SIAM J Control Optim 47(4):1909–1938

    Article  MathSciNet  MATH  Google Scholar 

  • Arendt W, Batty CJK (1988) Tauberian theorems and stability of one-parameter semigroups. Trans Am Math Soc 306(2):837–852

    Article  MathSciNet  MATH  Google Scholar 

  • Bassam M, Mercier D, Nicaise S, Wehbe A (2015) Polynomial stability of the Timoshenko system by one boundary damping. J Math Anal Appl 425(2):1177–1203

    Article  MathSciNet  MATH  Google Scholar 

  • Batty CJK, Duyckaerts T (2008) Non-uniform stability for bounded semi-groups on Banach spaces. J Evol Equ 8(4):765–780

    Article  MathSciNet  MATH  Google Scholar 

  • Benaissa A, Benazzouz S (2017) Well-posedness and asymptotic behavior of Timoshenko beam system with dynamic boundary dissipative feedback of fractional derivative type. Zeitschrift für angewandte Mathematik und Physik 68(4):68–94

  • Borichev A, Tomilov Y (2010) Optimal polynomial decay of functions and operator semigroups. Math Ann 347(2):455–478

    Article  MathSciNet  MATH  Google Scholar 

  • Cavalcanti MM, Cavalcanti VND, Nascimento FAF, Lasiecka I, Rodrigues JH (2013) Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping. Zeitschrift für angewandte Mathematik und Physik 65(6):1189–1206

    Article  MathSciNet  MATH  Google Scholar 

  • Curtain RF, Zwart H (1995) An introduction to infinite-dimensional linear systems theory, texts in applied mathematics, vol 21. Springer, New York

    MATH  Google Scholar 

  • Júnior DdaS Almeida, Santos ML, Rivera JEM (2013) Stability to 1-D thermoelastic Timoshenko beam acting on shear force. Zeitschrift für angewandte Mathematik und Physik 65(6):1233–1249

    Article  MathSciNet  MATH  Google Scholar 

  • Fatori LH, Monteiro RN, Sare HDF (2014) The Timoshenko system with history and Cattaneo law. Appl Math Comput 228:128–140

    MathSciNet  MATH  Google Scholar 

  • Guesmia A, Messaoudi SA (2009) General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping. Math Methods Appl Sci 32(16):2102–2122

    Article  MathSciNet  MATH  Google Scholar 

  • Hao J, Wei J (2018) Global existence and stability results for a nonlinear Timoshenko system of thermoelasticity of type III with delay. Bound Value Probl 2018(1):1–17

  • Huang F (1988) On the mathematical model for linear elastic systems with analytic damping. SIAM J Control Optim 26(3):714–724

    Article  MathSciNet  MATH  Google Scholar 

  • Huang FL (1985) Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces. Ann Differ Equ 1(1):43–56

    MathSciNet  MATH  Google Scholar 

  • Kato T (1995) Perturbation theory for linear operators. Springer, Berlin

    Book  MATH  Google Scholar 

  • Kim JU, Renardy Y (1987) Boundary control of the Timoshenko beam. SIAM J Control Optim 25(6):1417–1429

    Article  MathSciNet  MATH  Google Scholar 

  • Littman W, Markus L (1988) Stabilization of a hybrid system of elasticity by feedback boundary damping. Annali di Matematica Pura ed Applicata 152(1):281–330

    Article  MathSciNet  MATH  Google Scholar 

  • Liu K, Chen S, Liu Z (1998) Spectrum and stability for elastic systems with global or local Kelvin–Voigt damping. SIAM J Appl Math 59(2):651–668

    Article  MathSciNet  MATH  Google Scholar 

  • Liu K, Liu Z (1998) Exponential decay of energy of the Euler–Bernoulli beam with locally distributed Kelvin–Voigt damping. SIAM J Control Optim 36(3):1086–1098

    Article  MathSciNet  MATH  Google Scholar 

  • Liu K, Liu Z, Zhang Q (2017) Eventual differentiability of a string with local Kelvin–Voigt damping. ESAIM Control Optim Calc Var 23(2):443–454

    Article  MathSciNet  MATH  Google Scholar 

  • Liu Z, Rao B (2005) Characterization of polynomial decay rate for the solution of linear evolution equation. Z Angew Math Phys 56(4):630–644

    Article  MathSciNet  MATH  Google Scholar 

  • Liu Z, Zhang Q (2016) Stability of a string with local Kelvin–Voigt damping and non smooth coefficient at interface. SIAM J Control Optim 54(4):1859–1871

    Article  MathSciNet  MATH  Google Scholar 

  • Liu Z, Zhang Q (2018) Stability and regularity of solution to the Timoshenko beam equation with local Kelvin–Voigt damping. SIAM J Control Optim 56(6):3919–3947

    Article  MathSciNet  MATH  Google Scholar 

  • Liu Z, Zheng S (1999) Semigroups associated with dissipative systems. Research notes in mathematics, vol 398. Chapman & Hall, Boca Raton

    Google Scholar 

  • Messaoudi SA, Mustafa MI (2008) On the internal and boundary stabilization of Timoshenko beams. NoDEA Nonlinear Differ Equ Appl 15(6):655–671

    Article  MathSciNet  MATH  Google Scholar 

  • Messaoudi SA, Said-Houari B (2009) Uniform decay in a Timoshenko-type system with past history. J Math Anal Appl 360(2):459–475

    Article  MathSciNet  MATH  Google Scholar 

  • Muñoz Rivera JE, Racke R (2002) Mildly dissipative nonlinear Timoshenko systems—global existence and exponential stability. J Math Anal Appl 276(1):248–278

    Article  MathSciNet  MATH  Google Scholar 

  • Muñoz Rivera JE, Racke R (2008) Timoshenko systems with indefinite damping. J Math Anal Appl 341(2):1068–1083

    Article  MathSciNet  MATH  Google Scholar 

  • Nadine N (2016) Étude de la stabilisation exponentielle et polynomiale de certains systèmes d’équations couplées par des contrôles indirects bornés ou non bornés. Thèse université de Valenciennes

  • Pazy A (1983) Semigroups of linear operators and applications to partial differential, applied mathematical sciences equations, vol 44. Springer, New York

    MATH  Google Scholar 

  • Prüss J (1984) On the spectrum of \(C_{0}\)-semigroups. Trans Am Math Soc 284(2):847–857

    Article  MATH  Google Scholar 

  • Raposo CA, Ferreira J, Santos ML, Castro NNO (2005) Exponential stability for the Timoshenko system with two weak dampings. Appl Math Lett 18(5):535–541

    Article  MathSciNet  MATH  Google Scholar 

  • Renardy M (2004) On localized Kelvin–Voigt damping. ZAMM 84(4):280–283

    Article  MathSciNet  MATH  Google Scholar 

  • Sare HDF, Racke R (2009) On the stability of damped Timoshenko systems: Cattaneo versus Fourier law. Arch Ration Mech Anal 194(1):221–251

    Article  MathSciNet  MATH  Google Scholar 

  • Soufyane A, Whebe A (2003) Uniform stabilization for the Timoshenko beam by a locally distributed damping. Electron J Differ Equ 9:1–14

    MathSciNet  MATH  Google Scholar 

  • Tebou L (2015) A localized nonstandard stabilizer for the Timoshenko beam. Comptes Rendus Mathematique 353(3):247–253

    Article  MathSciNet  MATH  Google Scholar 

  • Tian X, Zhang Q (2017) Stability of a Timoshenko system with local Kelvin-Voigt damping. Zeitschrift für angewandte Mathematik und Physik 68(1):1–15

  • Timoshenko S (1921) LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Lond Edinb Dublin Philos Mag J Sci 41(245):744–746

    Article  Google Scholar 

  • Wehbe A, Youssef W (2009) Stabilization of the uniform Timoshenko beam by one locally distributed feedback. Appl Anal 88(7):1067–1078

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang Q (2010) Exponential stability of an elastic string with local Kelvin–Voigt damping. Zeitschrift für angewandte Mathematik und Physik 61(6):1009–1015

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao HL, Liu KS, Zhang CG (2004) Stability for the Timoshenko beam system with local Kelvin–Voigt damping. Acta Mathematica Sinica Engl Ser 21(3):655–666

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their valuable comments and useful suggestions.

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Eduardo Cerpa.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wehbe, A., Ghader, M. A transmission problem for the Timoshenko system with one local Kelvin–Voigt damping and non-smooth coefficient at the interface. Comp. Appl. Math. 40, 297 (2021). https://doi.org/10.1007/s40314-021-01446-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-021-01446-1

Keywords

Mathematics Subject Classification

Navigation