Skip to main content
Log in

A superconvergent nonconforming quadrilateral spline element for biharmonic equation using the B-net method

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we construct a new nonconforming quadrilateral element with 12 degrees of freedom to solve the biharmonic problems. \({\mathscr {T}}_{h}\) is a triangulated quadrangulation of the domain \(\varOmega \). For a quadrilateral element \(Q_{T}\), the finite element space, which contains \({\mathbb {P}}_{3}(Q_{T})\), is a subspace of the bivariate spline space \({\mathbf {S}}_{3}^{1}(Q_{T})\). The degrees of freedom are chosen as the four point values, the four edge integrals of the shape functions and the edge integrals of their normal derivatives such that the weak continuity between elements can be satisfied. Accordingly, we explicitly establish 12 spline interpolation bases in the B-net form. Error estimates are given with optimal convergence order in both discrete \(H^{2}\) and \(H^{1}\) seminorms. The proposed element NCQS12 can get the superconvergence results with theoretical proof when \({\mathscr {T}}_{h}\) is an uniform parallelogram mesh. Some degenerate meshes are considered subsequently. Finally, we do some numerical experiments to verify the theoretical analysis. Numerical results show that the proposed element performs well over the asymptotically regular parallelogram meshes, which is same as over the uniform parallelogram meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adini A, Clough R (1960) Analysis of plate bending by the finite element method. University of California, California

    Google Scholar 

  • Argyris J, Fried I, Scharpf D (1968) The TUBA family of plate elements for the matrix displacement method. Aeronaut J 72(692):701–709

    Article  Google Scholar 

  • Batoz JL, Tahar MB (1982) Evaluation of a new quadrilateral thin plate bending element. Int J Numer Methods Eng 18(11):1655–1677

    Article  MATH  Google Scholar 

  • Bell K (1969) A refined triangular plate bending finite element. Int J Numer Methods Eng 1(1):101–122

    Article  Google Scholar 

  • Bogner F, Fox R, Schmit L (1965) The generation of interelement compatible stiffness and mass matrices by the use of interpolation formulae. In: Przemieniecki J (ed) Proceedings of the conference on matrix methods in structural mechanics, pp 397–444. Wright Patterson Air Force Base, Ohio

  • Chen S (1996) 12-parameter rectangular plate elements ith geometric symmetry. Numer Math A J Chin Univ 3:233–238 (In Chinese)

    MathSciNet  MATH  Google Scholar 

  • Chen J, Li C (2013) Development of quadrilateral spline thin plate elements using the B-net method. Acta Mech Sin 29(4):567–574

    Article  MathSciNet  MATH  Google Scholar 

  • Chen J, Li C (2015) The cubic spline Hermite interpolation bases for thin plate bending quadrilateral elements. Sci Sin 45(9):1523

    Article  Google Scholar 

  • Chen J, Li CJ, Chen WJ (2010) A family of spline finite elements. Comput Struct 88(11–12):718–727

    Article  Google Scholar 

  • Chen S, Shi D, I chiro H (2003) Trapezoidal plate blending element with double set parameters. J Comput Math 21(4):513–518

    MathSciNet  Google Scholar 

  • Che W, Cheung YK (1997) Refined quadrilateral discrete Kirchhoff thin plate bending element. Int J Numer Methods Eng 40(21):3937–3953

    Article  MATH  Google Scholar 

  • Chen X, Cen S, Long Y (2005) Two thin plate elements developed by assuming rotations and using quadrilateral area coordinates. Eng Mech 22(4):1–5,30

    Google Scholar 

  • Clough R, Tocher J (1965) Finite element stiffness matrices for analysis of plates in bending. In: Proceedings of the 1st conference on matrix methods in structural mechanics. Wright Patterson AFB, Ohio

  • Farin G (1986) Triangular Bernstein–Bézier patches. Comput Aided Geom Des 3(2):83–127

    Article  Google Scholar 

  • Ciarlet PG (1978) The finite element method for elliptic problems, vol 4. North-Holland, Amsterdam

    Book  MATH  Google Scholar 

  • Grisvard P (1985) Elliptic problems in nonsmooth domains. Pitman Advanced Publishing Program, Boston

    MATH  Google Scholar 

  • Hrabok M, Hrudey T (1984) A review and catalogue of plate bending finite elements. Comput Struct 19(3):479–495

    Article  Google Scholar 

  • Jeyachandrabose C, Kirkhope J, Meekisho L (1987) An improved discrete Kirchhoff quadrilateral thin-plate bending element. Int J Numer Methods Eng 24(3):635–654

    Article  MATH  Google Scholar 

  • Lascaux P, Lesaint P (1975) Some nonconforming finite elements for the plate bending problem. Revue française d’automatique, informatique, recherche opérationnelle. Anal Numér 9(R1):9–53

    MathSciNet  MATH  Google Scholar 

  • Li C, Wang R (2006) A new 8-node quadrilateral spline finite element. J Comput Appl Math 195(1):54–65

    Article  MathSciNet  MATH  Google Scholar 

  • Ming P, Shi Z (2002) Quadrilateral mesh. Chin Ann Math B 23(2):235–252

    Article  MathSciNet  MATH  Google Scholar 

  • Park C, Sheen D (2013) A quadrilateral Morley element for biharmonic equations. Numer Math 124(2):395–413

    Article  MathSciNet  MATH  Google Scholar 

  • Sander G (1964) Bornes supérieures et inférieures dans l’analyse matricielle des plaques en flexion–torsion. Bull Soc R Sci Liège 33:456–494 (In French)

    Google Scholar 

  • Shi Z (1984) A convergence condition for the quadrilateral Wilson element. Numer Math 44(3):349–361

    Article  MathSciNet  MATH  Google Scholar 

  • Shi Z (1986) On the convergence of the incomplete biquadratic nonconforming plate element. Math Numer Sin 8(8):53–62 (In Chinese)

    MathSciNet  MATH  Google Scholar 

  • Shi Z (1990a) On the accuracy of the quasi-conforming and generalized conforming finite elements. Chin Ann Math 11(2):148–155

    MathSciNet  MATH  Google Scholar 

  • Shi Z (1990b) On the error estimates of Morley element. Math Numer Sin 12(2):113–118

    MathSciNet  MATH  Google Scholar 

  • Shi Z, Wang M (1988) Finite element methods. Science Press, Beijing

    Google Scholar 

  • Soh AK, Long Z, Cen S (2000) Development of a new quadrilateral thin plate element using area coordinates. Comput Methods Appl Mech Eng 190(8–10):979–987

    Article  MATH  Google Scholar 

  • Suire G, Cederbaum G (1995) Periodic and chaotic behavior of viscoelastic nonlinear (elastica) bars under harmonic excitations. Int J Mech Sci 37(7):753–772

    Article  MATH  Google Scholar 

  • Veubeke BFD (1968) A conforming finite element for plate bending. Int J Solids Struct 4(1):95–108

    Article  MATH  Google Scholar 

  • Wang RH (1975) The structural characterization and interpolation for multivariate splines. Acta Math Sin 18(2):91–106 (In Chinese)

    MATH  Google Scholar 

  • Wang RH (2001) Multivariate spline functions and their applications. Science Press, Beijing

    Book  Google Scholar 

  • Zhao Z, Xiao L, Chen S (2012) 13-parameter quadrilateral plate blending element with double set parameters. Math Numer Sin 34(3):285–296 (In Chinese)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong-Jun Li.

Additional information

Communicated by Philippe Heluy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China (nos. 11572081, 11871137, 11471066).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, CJ., Jia, YM. A superconvergent nonconforming quadrilateral spline element for biharmonic equation using the B-net method. Comp. Appl. Math. 39, 70 (2020). https://doi.org/10.1007/s40314-020-1105-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-020-1105-0

Keywords

Mathematics Subject Classification

Navigation