Skip to main content
Log in

Implicit Runge–Kutta and spectral Galerkin methods for Riesz space fractional/distributed-order diffusion equation

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

A numerical method with high accuracy both in time and in space is constructed for the Riesz space fractional diffusion equation, in which the temporal component is discretized by an s-stage implicit Runge–Kutta method and the spatial component is approximated by a spectral Galerkin method. For an algebraically stable Runge–Kutta method of order p\((p\ge s+1)\), the unconditional stability of the full discretization is proven and the convergence order of \(s+1\) in time is obtained. The optimal error estimate in space, with convergence order only depending on the regularity of initial value and f, is also derived. Meanwhile, this kind of method is applied to the Riesz space distributed-order diffusion equation, and similar stability and convergence results are obtained. Finally, numerical experiments are provided to illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\( {}_{-1}^{}D^{\mu }_{x}\) :

Left Riemann–Liouville fractional derivative operator with \(\mu >0\)

\((-{\varDelta })^{\frac{\alpha }{2}}\) :

Fractional Laplace operator with \(\alpha \in (0,1)\cup (1,2)\)

\(\frac{\partial ^{\alpha }}{\partial {\vert x\vert }^{\alpha }}\) :

Riesz fractional derivative operator with \(\alpha \in (0,2)\)

\({\hat{H}}\) :

Hilbert transform operator

\({\varLambda }\) :

\({\varLambda }=(-1,1)\)

\(\langle \cdot ,\cdot \rangle _{\omega ^{a,b},{\varOmega }}\) :

Inner product in \(L^{2}_{\omega ^{a,b}}({\varOmega })\)

\(\left\langle \cdot ,\cdot \right\rangle _{H^{k}({\varLambda })}\) :

Inner product in \(H^{k}({\varLambda })\) with \(k\in {\mathbb {N}}\)

\(\left\langle \cdot ,\cdot \right\rangle _{L^{2}({\varLambda })}\) :

Inner product in \(L^{2}({\varLambda })\)

\({\varOmega }\) :

\({\varOmega }=(\lambda _{1},\lambda _{2})\)

\(\omega ^{a,b}(x)\) :

\(\omega ^{a,b}(x) = (\frac{2}{\lambda _{2} - \lambda _{1}})^{a+b}(\lambda _{2} - x)^{a}(x - \lambda _{1})^{b}\) is the shifted Jacobi weight function with \(a, b>-1\)

\(\Vert \cdot \Vert _{\omega ^{a,b},{\varOmega }}\) :

Norm in \(L^{2}_{\omega ^{a,b}}({\varOmega })\)

\(\Vert \cdot \Vert _{H^{\mu }_{0}({\varLambda })}\) :

Norm in \(H^{\mu }_{0}({\varLambda })\) with \(\mu >0\)

\(\vert \cdot \vert _{H^{\mu }_{0}({\varLambda })}\) :

Semi-norm in \(H^{\mu }_{0}({\varLambda })\) with \(\mu >0\)

\(\Vert \cdot \Vert _{H^{k}({\varLambda })}\) :

Norm in \(H^{k}({\varLambda })\) with \(k\in {\mathbb {N}}\)

\(\Vert \cdot \Vert _{L^{2}({\varLambda })}\) :

Norm in \(L^{2}({\varLambda })\)

\(C^{\infty }({\varOmega })\) :

Space of infinitely differentiable functions on \({\varOmega }\)

\(H^{\mu }_{0}({\varLambda })\) :

Fractional derivative space on \({\varLambda }\) with \(\mu >0\)

\(H^{k}({\varLambda })\) :

Sobolev space on \({\varLambda }\) with \(k\in {\mathbb {N}}\)

\(H^{k}_{\omega ^{a,b},*}({\varOmega })\) :

\(H^{k}_{\omega ^{a,b},*}({\varOmega }) := \left\{ \eta (x) \in H^{1}{({\varOmega })} {\Big \vert } \frac{{\mathrm {d}}^{j}}{{\mathrm {d}} x^{j}}\eta (x) \in L^{2}_{\omega ^{a+j-1,b+j-1}}({\varOmega }),1 \le j \le k \right\} \) with \(k\in {\mathbb {N}}\)

\(H^{k}_{\omega ^{a,b}}({\varOmega })\) :

\(H^{k}_{\omega ^{a,b}}({\varOmega }):=\left\{ \eta (x){\Big \vert } \frac{{\mathrm {d}}^{j}}{{\mathrm {d}} x^{j}}\eta (x)\in L^{2}_{\omega ^{a+j,b+j}}({\varLambda }),~0\le j\le k \right\} \) with \(k\in {\mathbb {N}}\)

\(L^{2}({\varLambda })\) :

\(L^{2}\) space on \({\varLambda }\)

\(L^{2}_{\omega ^{a,b}}({\varOmega })\) :

\(L^{2}_{\omega ^{a,b}}({\varOmega }):=\{\eta (x)~\vert ~\eta (x)\) is measurable and \(\Vert \eta (x)\Vert _{\omega ^{a,b},{\varOmega }}<\infty \}\)

\(P_{N}({\varLambda })\) :

Space of polynomials defined on \({\varLambda }\) with degree less than or equal to N

\({}_{x}^{}D^{\mu }_{1}\) :

Right Riemann–Liouville fractional derivative operator with \(\mu >0\)

References

  • Abbaszadeh M (2019) Error estimate of second-order finite difference scheme for solving the Riesz space distributed-order diffusion equation. Appl Math Lett 88:179–185

    Article  MathSciNet  MATH  Google Scholar 

  • Benson DA, Wheatcraft SW, Meerschaert MM (2000) The fractional-order governing equation of Lévy motion. Water Resour Res 36(6):1413–1423

    Article  Google Scholar 

  • Biala TA (2019) Second-order predictor-corrector schemes for nonlinear distributed-order space-fractional differential equations with non-smooth initial data. Int J Comput Math 96(9):1861–1878

    Article  MathSciNet  Google Scholar 

  • Bu W, Tang Y, Yang J (2014) Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations. J Comput Phys 276:26–38

    Article  MathSciNet  MATH  Google Scholar 

  • Chechkin A, Gorenflo R, Sokolov I (2002) Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys Rev E 66(4):1–7 (Article 046129)

  • Chen M, Deng W (2014) Fourth order accurate scheme for the space fractional diffusion equations. SIAM J Numer Anal 52(3):1418–1438

    Article  MathSciNet  MATH  Google Scholar 

  • Chen Y, Tang T (2010) Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel. Math Comput 79(269):147–167

    Article  MathSciNet  MATH  Google Scholar 

  • Chen S, Shen J, Wang LL (2016) Generalized Jacobi functions and their applications to fractional differential equations. Math Comput 85(300):1603–1638

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng X, Duan J, Li D (2019) A novel compact ADI scheme for two-dimensional Riesz space fractional nonlinear reaction-diffusion equations. Appl Math Comput 346:452–464

    MathSciNet  MATH  Google Scholar 

  • Diethelm K, Ford NJ (2009) Numerical analysis for distributed-order differential equations. J Comput Appl Math 225(1):96–104

    Article  MathSciNet  MATH  Google Scholar 

  • Ding H, Li C, Chen Y (2015) High-order algorithms for Riesz derivative and their applications (II). J Comput Phys 293:218–237

    Article  MathSciNet  MATH  Google Scholar 

  • Ervin VJ, Roop JP (2006) Variational formulation for the stationary fractional advection dispersion equation. Numer Methods Partial Differ Equ 22(3):558–576

    Article  MathSciNet  MATH  Google Scholar 

  • Ervin VJ, Roop JP (2007) Variational solution of fractional advection dispersion equations on bounded domains in \({\mathbb{R}}^{d}\). Numer Methods Partial Differ Equ 23(2):256–281

    Article  MATH  MathSciNet  Google Scholar 

  • Fan W, Liu F (2018) A numerical method for solving the two-dimensional distributed order space-fractional diffusion equation on an irregular convex domain. Appl Math Lett 77:114–121

    Article  MathSciNet  MATH  Google Scholar 

  • Guo BY, Wang LL (2004) Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces. J Appox Theory 128(1):1–41

    Article  MathSciNet  MATH  Google Scholar 

  • Hairer E, Wanner G (1996) Solving ordinary differential equations II. Stiff and differential-algebraic problems, Springer, Berlin

    Book  MATH  Google Scholar 

  • Hochbruck M, Pažur T (2015) Implicit Runge-Kutta methods and discontinuous Galerkin discretizations for linear Maxwell’s equations. SIAM J Numer Anal 53(1):485–507

    Article  MathSciNet  MATH  Google Scholar 

  • Kazmi K, Khaliq AQ (2020) An efficient split-step method for distributed-order space-fractional reaction-diffusion equations with time-dependent boundary conditions. Appl Numer Math 147:142–160

    Article  MathSciNet  MATH  Google Scholar 

  • Keeling SL (1990) Galerkin/Runge-Kutta discretizations for semilinear parabolic equations. SIAM J Numer Anal 27(2):394–418

    Article  MathSciNet  MATH  Google Scholar 

  • Li J, Liu F, Feng L, Turner I (2017) A novel finite volume method for the Riesz space distributed-order advection-diffusion equation. Appl Math Model 46:536–553

    Article  MathSciNet  MATH  Google Scholar 

  • Li J, Liu F, Feng L, Turner I (2017) A novel finite volume method for the Riesz space distributed-order diffusion equation. Comput Math Appl 74:772–783

    Article  MathSciNet  MATH  Google Scholar 

  • Li M, Huang C, Wang P (2017) Galerkin finite element method for nonlinear fractional Schrödinger equations. Numer Algor 74(2):499–525

    Article  MATH  Google Scholar 

  • Lin X, Ng MK, Sun H (2019) Crank-Nicolson alternative direction implicit method for space-fractional diffusion equations with nonseparable coefficients. SIAM J Numer Anal 57(3):997–1019

    Article  MathSciNet  MATH  Google Scholar 

  • Liu Q, Liu F, Turner I, Anh V (2007) Approximation of the Lévy-Feller advection-dispersion process by random walk and finite difference method. J Comput Phys 222(1):57–70

    Article  MathSciNet  MATH  Google Scholar 

  • Maday Y (1990) Analysis of spectral projectors in one-dimensional domains. Math Comput 55(192):537–562

    Article  MathSciNet  MATH  Google Scholar 

  • Mao Z, Shen J (2016) Efficient spectral-Galerkin methods for fractional partial differential equations with variable coefficients. J Comput Phys 307:243–261

    Article  MathSciNet  MATH  Google Scholar 

  • Saichev AI, Zaslavsky GM (1997) Fractional kinetic equations: solutions and applications. Chaos 7(4):753–764

    Article  MathSciNet  MATH  Google Scholar 

  • Sokolov I, Chechkin A, Klafter J (2004) Distributed-order fractional kinetics. Acta Phys Pol B 35(4):1323–1341

    Google Scholar 

  • Song F, Xu C (2015) Spectral direction splitting methods for two-dimensional space fractional diffusion equations. J Comput Phys 299:196–214

    Article  MathSciNet  MATH  Google Scholar 

  • Srokowski T (2008) Lévy flights in nonhomogeneous media: distributed-order fractional equation approach. Phys Rev E 78(3):1–7 (Article 031135)

  • Wang D, Xiao A, Yang W (2013) Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative. J Comput Phys 242:670–681

    Article  MathSciNet  MATH  Google Scholar 

  • Wang X, Liu F, Chen X (2015) Novel second-order accurate implicit numerical methods for the Riesz space distributed-order advection-dispersion equations. Adv Math Phys 2015:1–14

    MathSciNet  MATH  Google Scholar 

  • Wang Y, Mei L, Li Q, Bu L (2019) Split-step spectral Galerkin method for the two-dimensional nonlinear space-fractional Schrödinger equation. Appl Numer Math 136:257–278

    Article  MathSciNet  MATH  Google Scholar 

  • Xing Z, Wen L (2019) Numerical analysis and fast implementation of a fourth-order difference scheme for two-dimensional space-fractional diffusion equations. Appl Math Comput 346:155–166

    MathSciNet  MATH  Google Scholar 

  • Zeng F, Liu F, Li C, Burrage K, Turner I, Anh V (2014) A Crank-Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation. SIAM J Numer Anal 52(6):2599–2622

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang H, Liu F, Anh V (2010) Galerkin finite element approximation of symmetric space-fractional partial differential equations. Appl Math Comput 217(6):2534–2545

    MathSciNet  MATH  Google Scholar 

  • Zhang H, Liu F, Jiang X, Zeng F, Turner I (2018) A Crank-Nicolson ADI Galerkin-Legendre spectral method for the two-dimensional Riesz space distributed-order advection-diffusion equation. Comput Math Appl 76:2460–2476

    Article  MathSciNet  Google Scholar 

  • Zhao X, Sun Z, Hao Z (2014) A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation. SIAM J Sci Comput 36(6):A2865–A2886

    Article  MATH  Google Scholar 

  • Zheng X, Liu H, Wang H, Fu H (2019) An efficient finite volume method for nonlinear distributed-order space-fractional diffusion equations in three space dimensions. J Sci Comput 80(3):1395–1418

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are greatly indebted to the referees for useful comments. This work was supported by the National Natural Science Foundation of China (11771112, 11671112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Xu.

Additional information

Communicated by José Tenreiro Machado.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Zhang, Y. & Xu, Y. Implicit Runge–Kutta and spectral Galerkin methods for Riesz space fractional/distributed-order diffusion equation. Comp. Appl. Math. 39, 47 (2020). https://doi.org/10.1007/s40314-020-1102-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-020-1102-3

Keywords

Mathematics Subject Classification

Navigation