Skip to main content
Log in

\(\psi \)-Hilfer pseudo-fractional operator: new results about fractional calculus

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we introduce the \(\psi \)-Hilfer pseudo-fractional operator, motivated by the \(\psi \)-Hilfer fractional derivative and the theory of pseudo-analysis. We investigate a wide class of important and essential results for pseudo-fractional calculus in a semiring \(([a, b], \oplus , \odot )\) and some particular cases are discussed. Specifically, we present a class of pseudo-fractional operators which are particular cases of the \(\psi \)-Hilfer pseudo-fractional operator. In addition, we present the pseudo-Leibniz-type rules I and II and pseudo-Leibniz rules and some particular cases of Leibniz-type rules I and II are discussed. Finally, we obtain formulas for the Hilfer pseudo-fractional derivative, for the pseudo-Laplace transform, and for the g-integration by parts of the \(\psi \)-Hilfer pseudo-fractional operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Agahi H, Babakhani A, Mesiar R (2015) Pseudo-fractional integral inequality of Chebyshev type. Inf Sci 301:161–168

    MathSciNet  MATH  Google Scholar 

  • Almeida R (2017) A Caputo fractional derivative of a function with respect to another function. Commun Nonlinear Sci Numer Simul 44:460–481

    MathSciNet  MATH  Google Scholar 

  • Babaei A, Moghaddam BP, Banihashemi S, Machado JAT (2020) Numerical solution of variable-order fractional integro-partial differential equations via Sinc collocation method based on single and double exponential transformations. Commun Nonlinear Sci Numer Simul 82:104985

    MathSciNet  MATH  Google Scholar 

  • Babakhani A, Yadollahzadeh M, Neamaty A (2018) Some properties of pseudo-fractional operators. J Pseudo-Differ Oper Appl 9(3):677–700

    MathSciNet  MATH  Google Scholar 

  • Caputo M (1967) Linear models of dissipation whose Q is almost frequency independent—II. Geophys J Int 13(5):529–539

    Google Scholar 

  • Caputo M (1969) Elasticitá e dissipazione (Elasticity and anelastic dissipation). Zanichelli, Bologna

    Google Scholar 

  • Diethelm K (2010) The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  • Frederico GSF, Lazo MJ (2016) Fractional Noether’s theorem with classical and Caputo derivatives: constants of motion for non-conservative systems. Nonlinear Dyn 85(2):839–851

    MathSciNet  MATH  Google Scholar 

  • Frederico GSF, Torres DFM (2008) Fractional conservation laws in optimal control theory. Nonlinear Dyn 53(3):215–222

    MathSciNet  MATH  Google Scholar 

  • Grunwald AK (1867) Uber” begrente” Derivationen und deren Anwedung. Zangew Math Und Phys 12:441–480

    Google Scholar 

  • Hilfer R (ed) (2000) Applications of fractional calculus in physics, vol 35, no 12. World scientific, Singapore

  • Hosseini M, Babakhani A, Agahi H, Rasouli SH (2016) On pseudo-fractional integral inequalities related to Hermite–Hadamard type. Soft Comput 20(7):2521–2529

    MATH  Google Scholar 

  • Kilbas AA, Marichev OI, Samko SG (1993) Fractional integral and derivatives (theory and applications), vol 1. Gordan and Breach, Amsterdam

    MATH  Google Scholar 

  • Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations, vol 204. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Letnikov AV (1868) Theory of differentiation with an arbitrary indicator. Matem Sbornik 3:1–68

    Google Scholar 

  • Luo D, Wang JR, Fečkan M (2018) Applying fractional calculus to analyze economic growth modelling. J Appl Math Stat Inf 14(1):25–36

    MATH  Google Scholar 

  • Machado JAT, Silva MF, Barbosa RS, Jesus IS, Reis CM, Marcos MG, Galhano AF (2010) Some applications of fractional calculus in engineering. Math Probl Eng

  • Nemati S, Lima PM, Torres DFM (2019) A numerical approach for solving fractional optimal control problems using modified hat functions. Commun Nonlinear Sci Numer Simul 78:104849

    MathSciNet  MATH  Google Scholar 

  • Oliveira DS, de Oliveira EC (2018) Hilfer–Katugampola fractional derivatives. Comput Appl Math 37(3):3672–3690

    MathSciNet  MATH  Google Scholar 

  • Ortigueira MD, Tenreiro Machado JA (2015) What is a fractional derivative? J Comput Phys 293:4–13

    MathSciNet  MATH  Google Scholar 

  • Pap E (2002) Pseudo-additive measures and their applications. In: Handbook of measure theory. North-Holland, pp 1403–1468

  • Pap E (2005) Applications of the generated pseudo-analysis to nonlinear partial differential equations. Contemp Math 377:239–260

    MathSciNet  MATH  Google Scholar 

  • Pap E, S̆trboja M (2010) Generalization of the Jensen inequality for pseudo-integral. Inf Sci 180(4):543–548

  • Rasheed A, Anwar MS (2018) Simulations of variable concentration aspects in a fractional nonlinear viscoelastic fluid flow. Commun Nonlinear Sci Numer Simul 65:216–230

    MathSciNet  MATH  Google Scholar 

  • Salati AB, Shamsi M, Torres DFM (2019) Direct transcription methods based on fractional integral approximation formulas for solving nonlinear fractional optimal control problems. Commun Nonlinear Sci Numer Simul 67:334–350

    MathSciNet  MATH  Google Scholar 

  • Sayevand K, Tenreiro Machado JA (2018) An accurate and cost-efficient numerical approach to analyze the initial and boundary value problems of fractional multi-order. Comput Appl Math 37(5):6582–6600

    MathSciNet  MATH  Google Scholar 

  • Silva CJ, Torres DFM (2019) Stability of a fractional HIV/AIDS model. Math Comput Simul 164:180–190

    MathSciNet  Google Scholar 

  • Sonin NY (1869) On differentiation with arbitrary index. Moscow Matem Sbornik 6(1):1–38

    Google Scholar 

  • Sousa JVC, de Oliveira EC (2018) On the \(\psi \)-Hilfer fractional derivative. Commun Nonlinear Sci Numer Simul 60:72–91

    MathSciNet  MATH  Google Scholar 

  • Sousa JVC, De Oliveira EC (2018) Ulam–Hyers stability of a nonlinear fractional Volterra integro-differential equation. Appl Math Lett 81:50–56

    MathSciNet  MATH  Google Scholar 

  • Sousa JVC, de Oliveira EC (2019) Leibniz type rule: \(\psi \)-Hilfer fractional operator. Commun Nonlinear Sci Numer Simul 77:305–311

    MathSciNet  MATH  Google Scholar 

  • Sousa JVC, de Oliveira EC (2019) On the \(\Psi \)-fractional integral and applications. Comput Appl Math 38(1):4

    MathSciNet  MATH  Google Scholar 

  • Sousa JVC, de Oliveira EC (2019) A Gronwall inequality and the Cauchy-type problem by means of \(\psi \)-Hilfer operator. Differ Equ Appl 11:87–106

    MathSciNet  MATH  Google Scholar 

  • Sousa JVC, de Oliveira EC, Magna LA (2017) Fractional calculus and the ESR test. AIMS Math 2(4):692–705

    MATH  Google Scholar 

  • Sousa JVC, dos Santos MNN, Magna LA, de Oliveira EC (2018) Validation of a fractional model for erythrocyte sedimentation rate. Comput Appl Math 37(5):6903–6919

    MathSciNet  MATH  Google Scholar 

  • Sousa JVC, Kucche KD, De Oliveira EC (2019) Stability of \(\psi \)-Hilfer impulsive fractional differential equations. Appl Math Lett 88:73–80

    MathSciNet  MATH  Google Scholar 

  • Sousa JVC, Zuo J, O’Regan D (2020) The Nehari manifold for a \(\psi \)-Hilfer fractional \(p\)-Laplacian (submitted)

  • Sulaimana TA, Yavuz M, Bulut H, Baskonus HM (2019) Investigation of the fractional coupled viscous Burgers’ equation involving Mittag–Leffler kernel. Phys A Stat Mech Appl 527:121126

    MathSciNet  Google Scholar 

  • Teodoro GS, Tenreiro Machado JA, de Oliveira EC (2019) A review of definitions of fractional derivatives and other operators. J Comput Phys 388:195–208

    MathSciNet  Google Scholar 

  • Wang JR, Ibrahim AG, Fečkan M, Zhou Y (2019) Controllability of fractional non-instantaneous impulsive differential inclusions without compactness. IMA J Math Control Inf 36(2):443–460

    MathSciNet  Google Scholar 

  • Xiao-Jun XJ, Srivastava HM, Machado JT (2016) A new fractional derivative without singular kernel. Thermal Sci 20(2):753–756

    Google Scholar 

  • Yadollahzadeh M, Babakhani A, Neamaty A (2019) Hermite–Hadamard’s inequality for pseudo-fractional integral operators. Stoch Anal Appl 37(4):620–635

    MathSciNet  MATH  Google Scholar 

  • Yang X-J (2019a) New general calculi with respect to another functions applied to describe the Newton-like dashpot models in anomalous viscoelasticity. Thermal Sci 260

  • Yang X-J (2019b) New non-conventional methods for quantitative concepts of anomalous rheology. Thermal Sci 427

  • Yang X-J (2019) General fractional derivatives: theory, methods and applications. CRC Press, New York

    MATH  Google Scholar 

  • Yang X-J, Tenreiro Machado JA (2019) A new fractal nonlinear Burgers’ equation arising in the acoustic signals propagation. Math Methods Appl Sci 42(18):7539–7544

    MathSciNet  MATH  Google Scholar 

  • Yang A-M, Han Y, Li J, Liu W-X (2016) On steady heat flow problem involving Yang–Srivastava–Machado fractional derivative without singular kernel. Thermal Sci 20(suppl. 3):717–721

    Google Scholar 

  • Yang X-J, Feng Y-Y, Cattani C, Inc M (2019) Fundamental solutions of anomalous diffusion equations with the decay exponential kernel. Math Methods Appl Sci 42(11):4054–4060

    MathSciNet  MATH  Google Scholar 

  • Yang X-J, Abdel-Aty M, Cattani C (2019) A new general fractional-order derivative with Rabotnov fractional-exponential kernel applied to model the anomalous heat transfer. Thermal Sci Part A 23(3):1677–1681

    Google Scholar 

  • Yang X-J, Gao F, Ju Y (2020) General fractional derivatives with applications in viscoelasticity. Academic Press, New York

    MATH  Google Scholar 

Download references

Acknowledgements

J. Vanterler acknowledges the financial support of a PNPD-CAPES (process number 873 no. 88882.305834/2018-01) scholarship of the Postgraduate Program in Applied Mathematics of IMECC874 Unicamp. The authors are grateful to Dr. J.E.M Maiorino for several and useful discussions and to the anonymous referees for suggestions that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Vanterler da C. Sousa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by José Tenreiro Machado.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sousa, J.V.d.C., Frederico, G.S.F. & de Oliveira, E.C. \(\psi \)-Hilfer pseudo-fractional operator: new results about fractional calculus. Comp. Appl. Math. 39, 254 (2020). https://doi.org/10.1007/s40314-020-01304-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-020-01304-6

Keywords

Mathematics Subject Classification

Navigation