Skip to main content
Log in

Stabilized principal interval decomposition method for model reduction of nonlinear convective systems with moving shocks

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

An efficient and reliable model order reduction of nonlinear systems poses a challenge for nonstationary problems with convective, non-periodic, and non-equilibrium dynamics. To that end, we put forth a localized basis selection strategy based on the proper orthogonal decomposition (POD) and principal interval decomposition (PID) to construct a stable reduced-order modeling framework to capture the unsteady dynamics of nonlinear systems effectively. The implementation of an eddy viscosity (EV) based closure model in POD–PID approach yields the proposed POD–PID–EV projection-based reduced-order modeling approach for nonlinear partial differential equations. Solving the nonlinear Burgers’ equation with various spatio-temporal dynamical complexities, it is shown that the present approach yields significant improvements in accuracy over the standard POD–Galerkin model with a negligibly small computational overhead. Furthermore, we show that strong moving discontinuities can be effectively captured in the low-dimensional space with the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  • Abidi O, Jbilou K (2016) Balanced truncation-rational Krylov methods for model reduction in large scale dynamical systems. Comput Appl Math 37:525–540

    Article  MathSciNet  MATH  Google Scholar 

  • Akhtar I, Nayfeh AH, Ribbens CJ (2009) On the stability and extension of reduced-order Galerkin models in incompressible flows. Theor Comput Fluid Dyn 23(3):213–237

    Article  MATH  Google Scholar 

  • Akhtar I, Wang Z, Borggaard J, Iliescu T (2012) A new closure strategy for proper orthogonal decomposition reduced-order models. J Comput Nonlinear Dyn 7(3):034503

    Article  Google Scholar 

  • Akhtar I, Borggaard J, Burns JA, Imtiaz H, Zietsman L (2015) Using functional gains for effective sensor location in flow control: a reduced-order modelling approach. J Fluid Mech 781:622–656

    Article  MathSciNet  MATH  Google Scholar 

  • Amsallem D, Farhat C (2008) Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA J 46(7):1803–1813

    Article  Google Scholar 

  • Amsallem D, Farhat C (2012) Stabilization of projection-based reduced-order models. Int J Numer Methods Eng 91(4):358–377

    Article  MathSciNet  MATH  Google Scholar 

  • Aubry N, Holmes P, Lumley JL, Stone E (1988) The dynamics of coherent structures in the wall region of a turbulent boundary layer. J Fluid Mech 192(1):115–173

    Article  MathSciNet  MATH  Google Scholar 

  • Balajewicz M, Dowell EH (2012) Stabilization of projection-based reduced order models of the Navier–Stokes. Nonlinear Dyn 70(2):1619–1632

    Article  MathSciNet  Google Scholar 

  • Balajewicz MJ, Dowell EH, Noack BR (2013) Low-dimensional modelling of high-Reynolds-number shear flows incorporating constraints from the Navier–Stokes equation. J Fluid Mech 729:285–308

    Article  MathSciNet  MATH  Google Scholar 

  • Balkovsky E, Falkovich G, Kolokolov I, Lebedev V (1997) Intermittency of Burgers’ turbulence. Phys Rev Lett 78(8):1452

    Article  MATH  Google Scholar 

  • Barone MF, Kalashnikova I, Segalman DJ, Thornquist HK (2009) Stable Galerkin reduced order models for linearized compressible flow. J Comput Phys 228(6):1932–1946

    Article  MathSciNet  MATH  Google Scholar 

  • Bec J, Khanin K (2007) Burgers turbulence. Phys Rep 447(1–2):1–66

    Article  MathSciNet  Google Scholar 

  • Benner P, Gugercin S, Willcox K (2015) A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev 57(4):483–531

    Article  MathSciNet  MATH  Google Scholar 

  • Benosman M, Borggaard J, San O, Kramer B (2017) Learning-based robust stabilization for reduced-order models of 2D and 3D Boussinesq equations. Appl Math Model 49:162–181

    Article  MathSciNet  Google Scholar 

  • Bergmann M, Bruneau CH, Iollo A (2009) Improvement of reduced order modeling based on POD. Comput Fluid Dyn 2008:779–784

    Google Scholar 

  • Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Annu Rev Fluid Mech 25(1):539–575

    Article  MathSciNet  Google Scholar 

  • Borggaard J, Hay A, Pelletier D (2007) Interval-based reduced order models for unsteady fluid flow. Int J Numer Anal Model 4(3–4):353–367

    MathSciNet  MATH  Google Scholar 

  • Borggaard J, Iliescu T, Wang Z (2011) Artificial viscosity proper orthogonal decomposition. Math Comput Model 53(1):269–279

    Article  MathSciNet  MATH  Google Scholar 

  • Borggaard J, Wang Z, Zietsman L (2016) A goal-oriented reduced-order modeling approach for nonlinear systems. Comput Math Appl 71(11):2155–2169

    Article  MathSciNet  Google Scholar 

  • Brunton SL, Noack BR (2015) Closed-loop turbulence control: progress and challenges. Appl Mech Rev 67(5):050801

    Article  Google Scholar 

  • Bui-Thanh T, Willcox K, Ghattas O, van Bloemen Waanders B (2007) Goal-oriented, model-constrained optimization for reduction of large-scale systems. J Comput Phys 224(2):880–896

    Article  MathSciNet  MATH  Google Scholar 

  • Carlberg K, Farhat C (2011) A low-cost, goal-oriented ‘compact proper orthogonal decomposition’ basis for model reduction of static systems. Int J Numer Methods Eng 86(3):381–402

    Article  MathSciNet  MATH  Google Scholar 

  • Cazemier W, Verstappen R, Veldman A (1998) Proper orthogonal decomposition and low-dimensional models for driven cavity flows. Phys Fluids 10(7):1685–1699

    Article  Google Scholar 

  • Cordier L, Majd E, Abou B, Favier J (2010) Calibration of POD reduced-order models using Tikhonov regularization. Int J Numer Methods Fluids 63(2):269–296

    MathSciNet  MATH  Google Scholar 

  • Cordier L, Noack BR, Tissot G, Lehnasch G, Delville J, Balajewicz M, Daviller G, Niven RK (2013) Identification strategies for model-based control. Exp Fluids 54(8):1580

    Article  Google Scholar 

  • Crighton DG (1979) Model equations of nonlinear acoustics. Annu Rev Fluid Mech 11(1):11–33

    Article  MATH  Google Scholar 

  • Das A, Moser RD (2002) Optimal large-Eddy simulation of forced Burgers equation. Phys Fluids 14(12):4344–4351

    Article  MathSciNet  MATH  Google Scholar 

  • Dehghan M, Abbaszadeh M (2016) Proper orthogonal decomposition variational multiscale element free Galerkin (POD-VMEFG) meshless method for solving incompressible Navier-Stokes equation. Comput Methods Appl Mech Eng 311:856–888

    Article  MathSciNet  Google Scholar 

  • El Majd BA, Cordier L (2016) New regularization method for calibrated POD reduced-order models. Math Model Anal 21(1):47–62

    Article  MathSciNet  Google Scholar 

  • Fang F, Pain C, Navon I, Gorman G, Piggott M, Allison P, Farrell P, Goddard A (2009) A POD reduced order unstructured mesh ocean modelling method for moderate Reynolds number flows. Ocean Model 28(1–3):127–136

    Article  Google Scholar 

  • Holmes P, Lumley JL, Berkooz G (1998) Turbulence, coherent structures, dynamical systems and symmetry. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24(6):417

    Article  MATH  Google Scholar 

  • Imtiaz H, Akhtar I (2016) Closure modeling in reduced-order model of Burgers’ equation for control applications. J Aerosp Eng 231:642–656

    Google Scholar 

  • Iollo A, Lanteri S, Désidéri JA (2000) Stability properties of POD-Galerkin approximations for the compressible Navier–Stokes equations. Theor Comput Fluid Dyn 13(6):377–396

    Article  MATH  Google Scholar 

  • Kunisch K, Volkwein S (2002) Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J Numer Anal 40(2):492–515

    Article  MathSciNet  MATH  Google Scholar 

  • Kunisch K, Volkwein S (2010) Optimal snapshot location for computing POD basis functions. ESAIM Math Model Numer Anal 44(3):509–529

    Article  MathSciNet  MATH  Google Scholar 

  • Lassila T, Manzoni A, Quarteroni A, Rozza G (2013) Model order reduction in fluid dynamics: challenges and perspectives. In: Quarteroni A, Rozza G (eds) Reduced order methods for modeling and computational reduction. Springer, Milan

    MATH  Google Scholar 

  • Loève M (1955) Probability theory: foundations, random sequences. D. Van Nostrand Company, New York

    MATH  Google Scholar 

  • Lorenz EN (1956) Empirical orthogonal functions and statistical weather prediction. Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  • Lumley J (1967) The structures of inhomogeneous turbulent flow. In: Yaglom A, Tatarski V (eds) Atmospheric turbulence and radio wave propagation. Nauka, Moscow, pp 160–178

    Google Scholar 

  • Nagatani T (2000) Density waves in traffic flow. Phys Rev E 61(4):3564–3570

    Article  Google Scholar 

  • Noack B, Papas P, Monkewitz P (2002) Low-dimensional Galerkin model of a laminar shear-layer. Tech. rep., Tech. Rep. 2002-01. Laboratoire de Mecanique des Fluides, Departement de Genie Mecanique, Ecole Polytechnique Fédérale de Lausanne, Lausanne

    Google Scholar 

  • Noack BR, Afanasiev K, Morzyński M, Tadmor G, Thiele F (2003) A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J Fluid Mech 497:335–363

    Article  MathSciNet  MATH  Google Scholar 

  • Noack BR, Morzynski M, Tadmor G (2011) Reduced-order modelling for flow control, vol 528. Springer, Berlin

    Book  MATH  Google Scholar 

  • Ravindran SS (2000) A reduced-order approach for optimal control of fluids using proper orthogonal decomposition. Int J Numer Methods Fluids 34(5):425–448

    Article  MathSciNet  MATH  Google Scholar 

  • Rempfer D (1997) Kohärente strukturen und chaos beim laminar-turbulenten grenzschichtumschlag, Ph.D. thesis. University of Stuttgart, Stuttgart

    Google Scholar 

  • Rowley CW (2005) Model reduction for fluids, using balanced proper orthogonal decomposition. Int J Bifurc Chaos 15(03):997–1013

    Article  MathSciNet  MATH  Google Scholar 

  • Rowley CW, Dawson ST (2017) Model reduction for flow analysis and control. Annu Rev Fluid Mech 49:387–417

    Article  MathSciNet  MATH  Google Scholar 

  • San O (2016) Analysis of low-pass filters for approximate deconvolution closure modelling in one-dimensional decaying Burgers turbulence. Int J Comput Fluid Dyn 30(1):20–37

    Article  MathSciNet  Google Scholar 

  • San O, Borggaard J (2015) Principal interval decomposition framework for POD reduced-order modeling of convective Boussinesq flows. Int J Numer Methods Fluids 78(1):37–62

    Article  MathSciNet  Google Scholar 

  • San O, Iliescu T (2014) Proper orthogonal decomposition closure models for fluid flows: Burgers equation. Int J Numer Anal Model 5:217–237

    MathSciNet  MATH  Google Scholar 

  • San O, Iliescu T (2015) A stabilized proper orthogonal decomposition reduced-order model for large scale quasigeostrophic ocean circulation. Adv Comput Math 41(5):1289–1319

    Article  MathSciNet  MATH  Google Scholar 

  • Sirisup S, Karniadakis GE (2004) A spectral viscosity method for correcting the long-term behavior of POD models. J Comput Phys 194(1):92–116

    Article  MathSciNet  MATH  Google Scholar 

  • Sirovich L (1987) Turbulence and the dynamics of coherent structures. I—Coherent structures. II—Symmetries and transformations. III—Dynamics and scaling. Q Appl Math 45:561–571

    Article  MATH  Google Scholar 

  • Taira K, Brunton SL, Dawson S, Rowley CW, Colonius T, McKeon BJ, Schmidt OT, Gordeyev S, Theofilis V, Ukeiley LS (2017) Modal analysis of fluid flows: an overview. AIAA J 55(12):4013–4041

    Article  Google Scholar 

  • Wang Z, Akhtar I, Borggaard J, Iliescu T (2011) Two-level discretizations of nonlinear closure models for proper orthogonal decomposition. J Comput Phys 230(1):126–146

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Z, Akhtar I, Borggaard J, Iliescu T (2012) Proper orthogonal decomposition closure models for turbulent flows: a numerical comparison. Comput Methods Appl Mech Eng 237:10–26

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Z, McBee B, Iliescu T (2016) Approximate partitioned method of snapshots for POD. J Comput Appl Math 307:374–384

    Article  MathSciNet  MATH  Google Scholar 

  • Weller J, Lombardi E, Bergmann M, Iollo A (2010) Numerical methods for low-order modeling of fluid flows based on POD. Int J Numer Methods Fluids 63(2):249–268

    MathSciNet  MATH  Google Scholar 

  • Wells D, Wang Z, Xie X, Iliescu T (2017) An evolve-then-filter regularized reduced order model for convection-dominated flows. Int J Numer Methods Fluids 84(10):598–615

    Article  MathSciNet  Google Scholar 

  • Xie X, Wells D, Wang Z, Iliescu T (2017) Approximate deconvolution reduced order modeling. Comput Methods Appl Mech Eng 313:512–534

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The computing for this project was performed at the OSU High Performance Computing Center at Oklahoma State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omer San.

Additional information

Communicated by Paul Cizmas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, M., San, O. Stabilized principal interval decomposition method for model reduction of nonlinear convective systems with moving shocks. Comp. Appl. Math. 37, 6870–6902 (2018). https://doi.org/10.1007/s40314-018-0718-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-018-0718-z

Keywords

Mathematics Subject Classification

Navigation