Skip to main content
Log in

The modified PAHSS–PU and modified PPHSS-SOR iterative methods for saddle point problems

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

Recently, by combining the preconditioned accelerated Hermitian and skew-Hermitian splitting (PAHSS) and the parameterized Uzawa (PU) methods, Zheng and Ma (Appl Math Comput 273, 217–225, 2016b) presented the PAHSS–PU method for saddle point problems. By adding a block lower triangular matrix to the coefficient matrix on two sides of the first equation of the PAHSS–PU iterative scheme, the modified PAHSS–PU (MPAHSS–PU) iteration method is proposed in this paper, which has a faster convergence rate than the PAHSS–PU one. Furthermore, changing the position of the parameters in the MPAHSS–PU method, we develop another new method referred to as the modified PPHSS-SOR (MPPHSS-SOR) iteration method for solving saddle point problems. We provide the convergence properties of the MPAHSS–PU and the MPPHSS-SOR iteration methods, which show that the new methods are convergent if the related parameters satisfy suitable conditions. Meanwhile, practical ways to choose iteration parameters for the proposed methods are developed. Finally, numerical experiments demonstrate that the MPAHSS–PU and the MPPHSS-SOR methods outperform some existing ones both on the number of iterations and the computational times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bai Z-Z (2006) Structured preconditioners for nonsingular matrices of block two-by-two structures. Math Comput 75:791–815

    Article  MathSciNet  Google Scholar 

  • Bai Z-Z (2009) Optimal parameters in the HSS-like methods for saddle-point problems. Numer Linear Algebra Appl 16:447–479

    Article  MathSciNet  Google Scholar 

  • Bai Z-Z (2015) Motivations and realizations of Krylov subspace methods for large sparse linear systems. J Comput Appl Math 283:71–78

    Article  MathSciNet  Google Scholar 

  • Bai Z-Z, Golub GH (2007) Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems. IMA J Numer Anal 27:1–23

    Article  MathSciNet  Google Scholar 

  • Bai Z-Z, Li G-Q (2003) Restrictively preconditioned conjugate gradient methods for systems of linear equations. IMA J Numer Anal 23:561–580

    Article  MathSciNet  Google Scholar 

  • Bai Z-Z, Wang Z-Q (2006) Restrictive preconditioners for conjugate gradient methods for symmetric positive definite linear systems. J Comput Appl Math 187:202–226

    Article  MathSciNet  Google Scholar 

  • Bai Z-Z, Wang Z-Q (2008) On parameterized inexact Uzawa methods for generalized saddle point problems. Linear Algebra Appl 428:2900–2932

    Article  MathSciNet  Google Scholar 

  • Bai Z-Z, Golub GH, Ng MK (2003) Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J Matrix Anal Appl 24:603–626

    Article  MathSciNet  Google Scholar 

  • Bai Z-Z, Golub GH, Pan J-Y (2004) Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems. Numer Math 98:1–32

    Article  MathSciNet  Google Scholar 

  • Bai Z-Z, Parlett BN, Wang Z-Q (2005a) On generalized successive overrelaxation methods for augmented linear systems. Numer Math 102:1–38

    Article  MathSciNet  Google Scholar 

  • Bai Z-Z, Golub GH, Lu L-Z, Yin J-F (2005b) Block triangular and skew-Hermitian splitting methods for positive-definite linear systems. SIAM J Sci Comput 26:844–863

    Article  MathSciNet  Google Scholar 

  • Bai Z-Z, Golub GH, Ng MK (2008) On inexact Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. Linear Algebra Appl 428:413–440

    Article  MathSciNet  Google Scholar 

  • Benzi M, Golub GH, Liesen J (2005) Numerical solution of saddle point problems. Acta Numer 14:1–137

    Article  MathSciNet  Google Scholar 

  • Betts JT (2001) Practical methods for optimal control using nonlinear programming. SIAM, Philadelphia

    MATH  Google Scholar 

  • Bramble JH, Pasciak JE, Vassilev AT (1997) Analysis of the inexact Uzawa algorithm for saddle point problems. SIAM J Numer Anal 34:1072–1092

    Article  MathSciNet  Google Scholar 

  • Brezzi F, Fortin M (1991) Mixed and hybrid finite elements methods. Springer series in computational mathematics. Springer, New York

    Book  Google Scholar 

  • Chao Z, Zhang N-M (2014) A generalized preconditioned HSS method for singular saddle point problems. Numer Algorithms 66:203–221

    Article  MathSciNet  Google Scholar 

  • Chen F (2015) On choices of iteration parameter in HSS method. Appl Math Comput 271:832–837

    MathSciNet  Google Scholar 

  • Elman HC (2002) Preconditioners for saddle point problems arising in computational fluid dynamics. Appl Numer Math 43:75–89

    Article  MathSciNet  Google Scholar 

  • Elman HC, Golub GH (1994) Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM J Numer Anal 31:1645–1661

    Article  MathSciNet  Google Scholar 

  • Elman HC, Silvester DJ, Wathen AJ (2002) Performance and analysis of saddle point preconditioners for the discrete steady-state Navier–Stokes equations. Numer Math 90:665–688

    Article  MathSciNet  Google Scholar 

  • Golub GH, Wu X, Yuan J-Y (2001) SOR-like methods for augmented systems. BIT Numer Math 41:71–85

    Article  MathSciNet  Google Scholar 

  • Guo P, Li C-X, Wu S-L (2015) A modified SOR-like method for the augmented systems. J Comput Appl Math 274:58–69

    Article  MathSciNet  Google Scholar 

  • Haber E, Ascher UM, Oldenburg D (2000) On optimization techniques for solving nonlinear inverse problems. Inverse Probl 16:1263–1280

    Article  MathSciNet  Google Scholar 

  • Huang Y-M (2014) A practical formula for computing optimal parameters in the HSS iteration methods. J Comput Appl Math 255:142–149

    Article  MathSciNet  Google Scholar 

  • Li J-T, Ma C-F (2017) The parameterized upper and lower triangular splitting methods for saddle point problems. Numer Algorithms 76:413–425

    Article  MathSciNet  Google Scholar 

  • Li X, Yang A-L, Wu Y-J (2014) Parameterized preconditioned Hermitian and skew-Hermitian splitting iteration method for saddle-point problems. Int J Comput Math 91:1224–1238

    Article  MathSciNet  Google Scholar 

  • Perugia I, Simoncini V (2000) Block-diagonal and indefinite symmetric preconditioners for mixed finite element formulations. Numer Linear Algebra Appl 7:585–616

    Article  MathSciNet  Google Scholar 

  • Rozloznik M, Simoncini V (2002) Krylov subspace methods for saddle point problems with indefinite preconditioning. SIAM J Matrix Anal Appl 24:368–391

    Article  MathSciNet  Google Scholar 

  • Sartoris GE (1998) A 3D rectangular mixed finite element method to solve the stationary semiconductor equations. SIAM J Sci Stat Comput 19:387–403

    Article  MathSciNet  Google Scholar 

  • Selberherr S (1984) Analysis and simulation of semiconductor devices. Springer, New York

    Book  Google Scholar 

  • Wang S-S, Zhang G-F (2013) Preconditioned AHSS iteration method for singular saddle point problems. Numer Algorithms 63:521–535

    Article  MathSciNet  Google Scholar 

  • Wang K, Di J-J, Liu D (2016) Improved PHSS iterative methods for solving saddle point problems. Numer Algorithms 71:753–773

    Article  MathSciNet  Google Scholar 

  • Yang A-L (2018) Scaled norm minimization method for computing the parameters of the HSS and the two-parameter HSS preconditioners. Numer Linear Algebra Appl 25:e2169. https://doi.org/10.1002/nla.2169

    Article  MathSciNet  MATH  Google Scholar 

  • Yin J-F, Bai Z-Z (2008) The restrictively preconditioned conjugate gradient methods on normal residual for block two-by-two linear systems. J Comput Math 26:240–249

    MathSciNet  MATH  Google Scholar 

  • Young DM (1971) Iteration solution for large systems. Academic Press, New York

    Google Scholar 

  • Yun J-H (2013) Variants of the Uzawa method for saddle point problem. Comput Math Appl 65:1037–1046

    Article  MathSciNet  Google Scholar 

  • Zhang J-J, Shang J-J (2010) A class of Uzawa-SOR methods for saddle point problems. Appl Math Comput 216:2163–2168

    MathSciNet  MATH  Google Scholar 

  • Zheng Q-Q, Ma C-F (2016a) A class of triangular splitting methods for saddle point problems. J Comput Appl Math 298:13–23

    Article  MathSciNet  Google Scholar 

  • Zheng Q-Q, Ma C-F (2016b) Preconditioned AHSS–PU alternating splitting iterative methods for saddle point problems. Appl Math Comput 273:217–225

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere thanks to the anonymous reviewer for his/her valuable suggestions and constructive comments which greatly improved the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Gong Wang.

Additional information

Communicated by Andreas Fischer.

This research was supported by the National Natural Science Foundation of China, the Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2018JM1032) and Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (no. CX201628).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, ZG., Wang, LG., Xu, Z. et al. The modified PAHSS–PU and modified PPHSS-SOR iterative methods for saddle point problems. Comp. Appl. Math. 37, 6076–6107 (2018). https://doi.org/10.1007/s40314-018-0680-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-018-0680-9

Keywords

Mathematics Subject Classification

Navigation