Skip to main content
Log in

Discrete Hahn polynomials for numerical solution of two-dimensional variable-order fractional Rayleigh–Stokes problem

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

The main aim of this paper is to find the numerical solutions of 2D Rayleigh–Stokes problem with the variable-order fractional derivatives in the Riemann–Liouville sense. The presented method is based on collocation procedure in combination with the new operational matrix of the variable-order fractional derivatives, in the Caputo sense, for the discrete Hahn polynomials. The main advantage of the proposed method is obtaining a global approximation for spatial and temporal discretizations, and it reduced the problem to an algebraic system, which is easier to solve. Also, the profit of approximating a continuous function by Hahn polynomials is that for computing the coefficients of the expansion, we only have to compute a summation and the calculation of coefficients is exact. The error bound for the approximate solution is estimated. Finally, we evaluate results of the presented method with other numerical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abramowitz M, Stegun I (1972) Handbook of mathematical functions. Dover Publications, New York

    MATH  Google Scholar 

  • Baik J, Kriecherbauer T, McLaughlin K, Miller P (2007) Discrete orthogonal polynomials: asymptotics and applications. Annals of mathematics studies series. Princeton University Press, Princeton

    Google Scholar 

  • Bazhlekova E, Jin B, Lazarov R, Zhou Z (2015) An analysis of the Rayleigh–Stokes problem for a generalized second-grade fluid. Numer Math 131(1):1–31

    Article  MathSciNet  MATH  Google Scholar 

  • Bhrawy A, Zaky M (2015) A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J Comput Phys 281:876–895

    Article  MathSciNet  MATH  Google Scholar 

  • Bhrawy A, Zaky M (2015) Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dyn 80(1):101–116

    Article  MathSciNet  MATH  Google Scholar 

  • Bhrawy A, Zaky M (2017) Highly accurate numerical schemes for multi-dimensional space variable-order fractional Schrödinger equations. Comput Math Appl 73(6):1100–1117

    Article  MathSciNet  Google Scholar 

  • Bhrawy A, Zaky M (2017) An improved collocation method for multi-dimensional spacetime variable-order fractional Schrödinger equations. Appl Numer Math 111:197–218

    Article  MathSciNet  MATH  Google Scholar 

  • Bhrawy A, Zaky M, Alzaidy J (2016) Two shifted Jacobi–Gauss collocation schemes for solving two-dimensional variable-order fractional Rayleigh–Stokes problem. Adv Differ Equ 2016(1):272

    Article  MathSciNet  Google Scholar 

  • Chen C, Liu F, Anh V (2008) Numerical analysis of the Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivatives. Appl Math Comput 204(1):340–351

    MathSciNet  MATH  Google Scholar 

  • Chen C, Liu F, Anh V, Turner I (2012a) Numerical methods for solving a two-dimensional variable-order anomalous subdiffusion equation. Math Comput 81:345–366

  • Chen C, Liu F, Burrage K, Chen Y (2012b) Numerical methods of the variable-order Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivative. IMA J Appl Math 78(5):924–944

  • Choi Y, Chan K (1992) A parabolic equation with nonlocal boundary conditions arising from electrochemistry. Nonlinear Anal Theory Methods Appl 18(4):317–331

    Article  MathSciNet  MATH  Google Scholar 

  • Cooper G, Cowan D (2004) Filtering using variable order vertical derivatives. Comput Geosci 30(5):455–459

    Article  Google Scholar 

  • Dabiri A, Moghaddam B, Machado J (2018) Optimal variable-order fractional PID controllers for dynamical systems. J Comput Appl Math 339:40–48

    Article  MathSciNet  MATH  Google Scholar 

  • Dehghan M (2005) Efficient techniques for the second-order parabolic equation subject to nonlocal specifications. Appl Numer Math 52(1):39–62

    Article  MathSciNet  MATH  Google Scholar 

  • Dehghan M (2006) A computational study of the onedimensional parabolic equation subject to nonclassical boundary specifications. Numer Methods Partial Differ Equ 22(1):220–257

    Article  MATH  Google Scholar 

  • Dehghan M, Abbaszadeh M (2017) A finite element method for the numerical solution of Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivatives. Eng Comput 33(3):587–605

    Article  Google Scholar 

  • Deuflhard P, Wulkow M (1989) Computational treatment of polyreaction kinetics by orthogonal polynomials of a discrete variable. IMPACT Comput Sci Eng 1(3):269–301

    Article  MATH  Google Scholar 

  • Dulf E, Dulf F, Muresan C (2015) Fractional model of the cryogenic (13c) isotope separation column. Chem Eng Commun 202(12):1600–1606

    Article  Google Scholar 

  • Feller W (1979) An introduction to probability theory and its applications, vol 1. Wiley, New York

    MATH  Google Scholar 

  • Gasca M, Sauer T (2000) On the history of multivariate polynomial interpolation. J Comput Appl Math 122(1):23–35

    Article  MathSciNet  MATH  Google Scholar 

  • Goertz R, Öffner P (2016) On Hahn polynomial expansion of a continuous function of bounded variation. ArXiv e-prints: arXiv:1610.06748

  • Goertz R, Öffner P (2016) Spectral accuracy for the Hahn polynomials. ArXiv e-prints: arXiv:1609.07291

  • Jahanshahi S, Torres D (2017) A simple accurate method for solving fractional variational and optimal control problems. J Optim Theory Appl 174(1):156–175

    Article  MathSciNet  MATH  Google Scholar 

  • Karlin S, McGregor J (1957) The differential equations of birth-and-death processes, and the Stieltjes moment problem. Trans Am Math Soc 85:489–546

    Article  MathSciNet  MATH  Google Scholar 

  • Karlin S, McGregor J (1958) Linear growth birth-and-death processes. J Math Mech (Now Indiana Univ Math J) 7:643–662

    Article  MathSciNet  MATH  Google Scholar 

  • Karlin S, McGregor J (1961) The Hahn polynomials, formulas and an application. Scripta Math 26:33–46

    MathSciNet  MATH  Google Scholar 

  • Koekoek R, Lesky P, Swarttouw R (2010) Hypergeometric orthogonal polynomials and their q-analogues. Springer monographs in mathematics. Springer, Berlin

    Book  MATH  Google Scholar 

  • Laskin N (2017) Time fractional quantum mechanics. Chaos Soliton Fract 102:16–28

    Article  MathSciNet  MATH  Google Scholar 

  • Machado J, Moghaddam B (2017) A computational approach for the solution of a class of variable-order fractional integro-differential equations with weakly singular kernels. Fract Calc Appl Anal 20(4):1023–1042

    MathSciNet  MATH  Google Scholar 

  • Machado J, Moghaddam B (2018) A robust algorithm for nonlinear variable-order fractional control systems with delay. Int J Nonlinear Sci Numer 2018. https://doi.org/10.1515/ijnsns-2016-0094

  • Mandyam G, Ahmed N (1996) The discrete Laguerre transform: derivation and applications. IEEE Trans Signal Process 44(12):2925–2931

    Article  Google Scholar 

  • Moghadam MM, Saeedi H, Mollahasani N (2010) A new operational method for solving nonlinear Volterra integro-differential equations with fractional order. J Inform Math Sci 2(2 & 3):95–107

    Google Scholar 

  • Moghaddam B, Machado J, Behforooz H (2017) An integro quadratic spline approach for a class of variable-order fractional initial value problems. Chaos Soliton Fract 102:354–360

    Article  MathSciNet  MATH  Google Scholar 

  • Mohebbi A, Abbaszadeh M, Dehghan M (2013) Compact finite difference scheme and RBF meshless approach for solving 2D Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivatives. Comput Methods Appl Mech Eng 264:163–177

    Article  MathSciNet  MATH  Google Scholar 

  • Narumi S (1920) Some formulas in the theory of interpolation of many independent variables. Tohoku Math J 18:309–321

    MATH  Google Scholar 

  • Saeedi H, Mohseni Moghadam M (2011) Numerical solution of nonlinear Volterra integro-differential equations of arbitrary order by CAS wavelets. Commun Nonlinear Sci 16:1216–1226

    Article  MathSciNet  MATH  Google Scholar 

  • Saeedi H, Mollahasani N, Mohseni Moghadam M, Chuev G (2011) An operational Haar wavelet method for solving fractional Volterra integral equations. J Univ Zielona Gora Lubuskie J Univ Zielona Gora Lubuskie Sci Soc 21(3):535–547

    MathSciNet  MATH  Google Scholar 

  • Salehi F, Saeedi H, Mohseni Moghadam M (2018) A Hahn computational operational method for variable order fractional mobile-immobile advection–dispersion equation. Math Sci. https://doi.org/10.1007/s40096-018-0248-2

  • Samko S, Ross B (1993) Integration and differentiation to a variable fractional order. Integral Transf Spec Funct 1(4):277–300

    Article  MathSciNet  MATH  Google Scholar 

  • Shen F, Tan W, Zhao Y, Masuoka T (2006) The Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivative model. Nonlinear Anal Real World Appl 7(5):1072–1080

    Article  MathSciNet  MATH  Google Scholar 

  • Shores TS (2007) Applied linear algebra and matrix analysis. Undergraduate texts in mathematics. Springer, Berlin

    Book  Google Scholar 

  • Stritzke P, King M, Vaknine R, Goldsmith S (1990) Deconvolution using orthogonal polynomials in nuclear medicine: a method for forming quantitative functional images from kinetic studies. IEEE Trans Med Imaging 9(1):11–23

    Article  Google Scholar 

  • Tavares D, Almeida R, Torres D (2015) Optimality conditions for fractional variational problems with dependence on a combined Caputo derivative of variable order. Optimization 64(6):1381–1391

    Article  MathSciNet  MATH  Google Scholar 

  • Umarov S, Steinberg S (2009) Variable order differential equations with piecewise constant order-function and diffusion with changing modes. ArXiv e-prints: arXiv:0903.2524

  • Valdés-Parada F, Ochoa-Tapia J, Alvarez-Ramirez J (2007) Effective medium equations for fractional Ficks law in porous media. Phys A 373:339–353

    Article  Google Scholar 

  • Vinagre B, Podlubny I, Hernandez A, Feliu V (2000) Some approximations of fractional order operators used in control theory and applications. Fract Calc Appl Anal 3(3):231–248

    MathSciNet  MATH  Google Scholar 

  • Xue C, Nie J (2009) Exact solutions of the Rayleigh–Stokes problem for a heated generalized second grade fluid in a porous half-space. Appl Math Model 33(1):524–531

    Article  MathSciNet  MATH  Google Scholar 

  • Yang X (2016) Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat-transfer problems. Therm Sci 21(3):1161–1171 (ArXiv e-prints)

    Article  Google Scholar 

  • Yang X (2018) New rheological problems involving general fractional derivatives with nonsingular power-law kernels. Proc Roman Acad Ser A 19:45–52

    MathSciNet  Google Scholar 

  • Yang X, Machado J (2017) A new fractional operator of variable order: application in the description of anomalous diffusion. Phys A Stat Mech Appl 481:276–283

    Article  MathSciNet  Google Scholar 

  • Yang X, Gao F, Srivastava H (2017) Exact travelling wave solutions for the local fractional two-dimensional Burgers-type equations. Comput Math Appl 73(2):203–210

    Article  MathSciNet  MATH  Google Scholar 

  • Yang X, Machado J, Baleanu D (2017) Exact traveling-wave solution for local fractional Boussinesq equation in fractal domain. Fractals 25(04):1740006

    Article  MathSciNet  Google Scholar 

  • Yang X, Machado J, Cattani C, Gao F (2017) On a fractal LC-electric circuit modeled by local fractional calculus. Commun Nonlinear Sci Numer Simul 47:200–206

    Article  Google Scholar 

  • Zafar Z, Rehan K, Mushtaq M (2017) HIV/AIDS epidemic fractional-order model. J Differ Equ Appl 23(7):1298–1315

    Article  MathSciNet  MATH  Google Scholar 

  • Zaky M (2017) An improved tau method for the multi-dimensional fractional Rayleigh-Stokes problem for a heated generalized second grade fluid. Comput Math Appl 75(7):2243–2258

    Article  MathSciNet  Google Scholar 

  • Zaky M (2018a) A research note on the nonstandard finite difference method for solving variable-order fractional optimal control problems. J Vib Control. https://doi.org/10.1177/1077546318761443

  • Zaky M (2018b) A Legendre collocation method for distributed-order fractional optimal control problems. Nonlinear Dyn 91(4):2667–2681

  • Zaky MA, Baleanu D, Alzaidy JF, Hashemizadeh E (2018) Operational matrix approach for solving the variable-order nonlinear Galilei invariant advection–diffusion equation. Adv Differ Equ 2018(1):102

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habibollah Saeedi.

Additional information

Communicated by José Tenreiro Machado.

Appendix

Appendix

Definition 4

The Pochhammer symbol, \((a)_k\), is defined by the following relations:

$$\begin{aligned} (a)_0&:=1,\nonumber \\ (a)_k&:=a(a+1)(a+2)\ldots (a+k-1), \ \ k\in \mathbb {N}, \ a\in \mathbb {C},\ Re(a)>0. \end{aligned}$$
(40)

Definition 5

(Abramowitz and Stegun 1972, p. 824) Stirling numbers of the first kind is defined as

$$\begin{aligned} S_k^{(i)}=\sum _{r=0}^{k-i}(-1)^{r}{k-1+r \atopwithdelims ()k-i+r}{2k-i \atopwithdelims ()k-i-r}s_ {k-i+r}^{(r)},\quad i,k,r\in \mathbb {N}, \end{aligned}$$
(41)

where \(s_k^{(i)}\) are the Stirling numbers of the second kind, namely

$$\begin{aligned} s_k^{(i)}=\frac{1}{i!} \sum _{r=0}^{i}(-1)^{i-r}{r \atopwithdelims ()i}r^{k}. \end{aligned}$$
(42)

Definition 6

The Kronecker product of the \(m\times n\) matrix \(\mathbf {A}\) and the \(p\times q\) matrix \(\mathbf {B}\) is \(np\times mq\) matrix \(\mathbf {A}\otimes \mathbf {B}\), which is defined by

$$\begin{aligned} \mathbf {A}_{m\times n}= & {} \left[ \begin{array}{cccc} a_{11} &{} a_{12} &{} {\dots }&{} a_{1n}\\ a_{21} &{} a_{22} &{} {\dots }&{} a_{2n}\\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ a_{m1} &{} a_{m2} &{} {\dots }&{} a_{mn}\\ \end{array} \right] , \quad \mathbf {B}_{p\times q}= \left[ \begin{array}{cccc} b_{11} &{} b_{12} &{} {\dots }&{} b_{1q}\\ b_{21} &{} b_{22} &{} {\dots }&{} b_{2q}\\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ b_{p1} &{} b_{p2} &{} {\dots }&{} b_{pq}\\ \end{array} \right] ,\\ \mathbf {A}\otimes \mathbf {B}= & {} \left[ \begin{array}{cccc} a_{11}\mathbf {B} &{} a_{12}\mathbf {B} &{} {\dots }&{} a_{1n}\mathbf {B}\\ a_{21}\mathbf {B} &{} a_{22}\mathbf {B} &{} {\dots }&{} a_{2n}\mathbf {B}\\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ a_{m1}\mathbf {B} &{} a_{m2}\mathbf {B} &{} {\dots }&{} a_{mn}\mathbf {B}\\ \end{array} \right] . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehi, F., Saeedi, H. & Moghadam, M.M. Discrete Hahn polynomials for numerical solution of two-dimensional variable-order fractional Rayleigh–Stokes problem. Comp. Appl. Math. 37, 5274–5292 (2018). https://doi.org/10.1007/s40314-018-0631-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-018-0631-5

Keywords

Mathematics Subject Classification

Navigation