Skip to main content
Log in

Boundary coefficient determination for an eddy current problem based on the potential field method

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

We study a recovery problem for an unknown boundary coefficient relating to one material characteristic in an eddy current field. The field equations are represented in terms of the potential field method (\(\varvec{T} - \psi \) method) and can be solved numerically by the nodal finite element method. We introduce a measurement as an additional condition and prove the existence and uniqueness of the weak solution. Further, we present an iteration algorithm for the recovery problem and validate its efficiency by two numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Chen T, Kang T, Lu G, Wu L (2014) A (\(\varvec {T}\), \(\psi \))-\(\psi _e\) decoupled scheme for a time-dependent multiply-connected eddy current problem. Math Methods Appl Sci 37(3):343–359

    Article  MathSciNet  MATH  Google Scholar 

  • Chew WC (2014) Vector potential electromagnetic theory with generalized gauge for inhomogeneous anisotropic media. arXiv preprint arXiv:1406.4780

  • Chovan J, Geuzaine C, Slodička M (2017) \(\varvec {A}-\phi \) formulation of a mathematical model for the induction hardening process with a nonlinear law for the magnetic field. Comput Methods Appl Mech Eng 321:294–315

    Article  MathSciNet  Google Scholar 

  • Costabel M, Dauge M (2002) Weighted regularization of maxwell equations in polyhedral domains. Numer Math 93(2):239–277

    Article  MathSciNet  MATH  Google Scholar 

  • Duan H-Y, Jia F, Lin P, Tan RCE (2009) The local \({L} ^2\) projected \({C} ^0\) finite element method for maxwell problem. SIAM J Numer Anal 47(2):1274–1303

    Article  MathSciNet  MATH  Google Scholar 

  • Duan H-Y, Lin P, Tan RCE (2012) \({C} ^0\) elements for generalized indefinite maxwell equations. Numer Math 122(1):61–99

    Article  MathSciNet  MATH  Google Scholar 

  • Duan H-Y, Lin P, Tan RCE (2013) Analysis of a continuous finite element method for \(\varvec {H} \left( \text{ curl }, \text{ div } \right)\)-elliptic interface problem. Numer Math 123(4):671–707

    Article  MathSciNet  Google Scholar 

  • Duan H-Y, Lin P, Tan RCE (2013) Error estimates for a vectorial second-order elliptic eigenproblem by the local \({L} ^2\) projected \({C} ^0\) finite element method. SIAM J Numer Anal 51(3):1678–1714

    Article  MathSciNet  MATH  Google Scholar 

  • Duan H-Y, Lin P, Tan RCE (2016) A finite element method for a curlcurl-graddiv eigenvalue interface problem. SIAM J Numer Anal 54(2):1193–1228

    Article  MathSciNet  MATH  Google Scholar 

  • Fabrizio M, Morro A (2003) Electromagnetism of continuous media. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  • Jin J (2014) The finite element method in electromagnetics, 3rd edn. Wiley-IEEE Press, New York

    MATH  Google Scholar 

  • Kang T, Chen T, Wang Y, Kim KI (2015) A \(\varvec {T}\)-\(\psi \) formulation with the penalty function term for the 3d eddy current problem in laminated structures. Appl Math Comput 271:618–641

    MathSciNet  Google Scholar 

  • Kang T, Kim KI (2009) Fully discrete potential-based finite element methods for a transient eddy current problem. Computing 85(4):339–362

    Article  MathSciNet  MATH  Google Scholar 

  • Monk P (2003) Finite element methods for Maxwell’s equations. Clarendon Press, Oxford

    Book  MATH  Google Scholar 

  • Mur G (1994) Edge elements, their advantages and their disadvantages. IEEE Trans Magn 30(5):3552–3557

    Article  Google Scholar 

  • Slodička M, Van Keer R (2000) Determination of the convective transfer coefficient in elliptic problems from a non-standard boundary condition. In: Marylka J, Tuma M, Sembere J (eds) Simulation, modelling, and numerical analysis : SIMONA 2000. Technical University Liberec, Liberec, pp 13–20

    Google Scholar 

  • Zemanova V, Slodička M, Dupré L (2010) Determination of a material constant in the impedance boundary condition for electromagnetic fields. J Comput Appl Math 234(7):2062–2068

    Article  MathSciNet  MATH  Google Scholar 

  • Zeng Z, Udpa L, Udpa SS, Chan MSC (2009) Reduced magnetic vector potential formulation in the finite element analysis of eddy current nondestructive testing. IEEE Trans Magn 45(3):964–967

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Kang.

Additional information

Communicated by Jorge X. Velasco.

This work was supported by National Science Foundation of China (41725017, 41590864, 11571352), National Basic Research Program of China under Grant number 2014CB845906. It was also partially supported by the CAS/CAFEA international partnership Program for creative research teams (No. KZZD-EW-TZ-19 and KZZD-EW-TZ-15).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Kang, T. & Wang, Y. Boundary coefficient determination for an eddy current problem based on the potential field method. Comp. Appl. Math. 37, 3981–3994 (2018). https://doi.org/10.1007/s40314-017-0562-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-017-0562-6

Keywords

Mathematics Subject Classification

Navigation