Skip to main content
Log in

Sommerfeld effect in a constrained electromechanical system

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, the dynamics of an electromechanical system is investigated. In this model, the phase of the system is a dynamical variable. The existence of four periodic orbits is proved. Two of them are asymptotically stable and the others are unstable. In the absence of viscous damping, when the parameters associated with the dimensionless voltages are adequately changed, each orbit is subject to a change of stability of the kind stable \(\rightarrow \) unstable \(\rightarrow \) stable with repetition of this pattern. This phenomenon is known as Sommerfeld effect. Moreover, the stability of these orbits depends on the zeros of the Bessel function \(J_{1}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Balthazar J, Mook D, Weber H, Brasil R, Felini A, Belato D, Felix J (2003) An overview on non-ideal vibrations. Meccanica 38:613–621

    Article  MATH  Google Scholar 

  • Blekhman II (2000) Vibrational mechanics: nonlinear dynamic effects, general approach, applications. World Scientific, Singapore

    Book  Google Scholar 

  • Dantas M, Balthazar J (2007) On the existence and stability of periodic orbits in non ideal problems: general results. Z Angew Math Phys (ZAMP) 58:940–958

    Article  MathSciNet  MATH  Google Scholar 

  • Dantas M, Sampaio R, Lima R (2014) Asymptotically stable periodic orbits of a coupled electromechanical system. Nonlinear Dyn 78:29–35

    Article  MATH  Google Scholar 

  • Dantas M, Sampaio R, Lima R (2016a) Existence and asymptotic stability of periodic orbits for a class of electromechanical systems: a perturbation theory approach. Z Angew Math Phys (ZAMP) 67:1–14

    Article  MathSciNet  MATH  Google Scholar 

  • Dantas M, Sampaio R, Lima R (2016b) Phase bifurcations in an electromechanical system. IUTAM Symp Anal Methods Nonlinear Dyn Procedia IUTAM 19:193–200

    Google Scholar 

  • Eckert M (1996) The ’Sommerfeld-Effekt’: Theorie und Geschichte eines bemerkenswerten Resonanzphänomens. Eur J Phys 17:285–289

    Article  Google Scholar 

  • Eckert M (2013) Arnold sommerfeld: science, life and turbulent times 1868–1951. Springer, New York

    Book  MATH  Google Scholar 

  • Fidlin A (2006) Nonlinear oscillations in mechanical engineering. Springer, New York

    Google Scholar 

  • Hale J (2009) Ordinary differential equations. Dover Publications, Mineola

    MATH  Google Scholar 

  • Karnopp D, Margolis D, Rosenberg R (2006) System dynamics: modeling and simulation of mechatronic systems, 4th edn. Wiley, New York

    Google Scholar 

  • Kononenko VO (1969) Vibrating systems with a limited power supply. London Iliffe Books LTD, London

    Google Scholar 

  • Lima R, Sampaio R (2012) Analysis of an electromechanic coupled system with embarked mass. Mec Comput XXXI:2709–2733

    Google Scholar 

  • Lima R, Sampaio R (2016a) Two parametric excited nonlinear systems due to electromechanical coupling. J Braz Soc Mech Sci Eng 38:931–943

    Article  Google Scholar 

  • Lima R, Sampaio R (2016b) Energy behavior of an electromechanical system with internal impacts and uncertainties. J Sound Vib 373:180–191

    Article  Google Scholar 

  • Lima R, Soize C, Sampaio R (2015) Robust design optimization with an uncertain model of a nonlinear vibro-impact electro-mechanical system. Commun Nonlinear Sci Numer Simul 23:263–273

    Article  Google Scholar 

  • Nayfeh AH, Mook DT (1979) Nonlinear oscillations. Wiley, New York

    MATH  Google Scholar 

  • Sommerfeld A (1902) Beiträge zum dynamischen Ausbau der Festigkeitslehre. Zeitschrift des Vereines deutscher Ingenieure 46:391–394

    MATH  Google Scholar 

  • Stoker J (1950) Nonlinear vibrations in mechanical and electrical systems. Interscience Publishers Inc, New York

    MATH  Google Scholar 

  • Whittaker E, Watson G (1973) A course in modern analysis. Cambridge University Press, London

    MATH  Google Scholar 

Download references

Acknowledgements

The first author acknowledges the support given by FAPEMIG and the second and third authors acknowledge the support given by FAPERJ, CNPq, and CAPES

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Lima.

Additional information

Communicated by Luz de Teresa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dantas, M.J.H., Sampaio, R. & Lima, R. Sommerfeld effect in a constrained electromechanical system. Comp. Appl. Math. 37, 1894–1912 (2018). https://doi.org/10.1007/s40314-017-0428-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-017-0428-y

Keywords

Navigation