Skip to main content
Log in

Mixed-Integer MPC for Closed-Loop Motion Planning and Flight Control of a Laboratory Helicopter

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This work addresses the problem of planning and tracking collision-free trajectories with a laboratory helicopter restrained to three degrees of freedom (DOF) using model predictive control (MPC) with mixed-integer programming (MIP) encoding. We propose a multirate structure that divides the system dynamics into slower and faster modes. The MPC-MIP is then employed to directly control only the slower portion, allowing it to operate in a closed loop in spite of its relatively time-demanding optimizations. Experimental results show that the proposed control structure allows the computation of globally optimal trajectories and controls with the required frequency, resulting in the successful maneuvering of the helicopter toward a target in an obstacle-filled environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Afonso, R. J. M., & Galvão, R. K. H. (2010). Predictive control of a helicopter model with tolerance to actuator faults. In 2010 conference on control and fault-tolerant systems (SysTol) (pp. 744–751).

  • Afonso, R., & Galvão, R. (2013). Comments on “Enhancements on the hyperplanes arrangements in mixed-integer programming techniques’’. Journal of Optimization Theory and Applications, 09(162), 996–1003.

    Google Scholar 

  • Afonso, R. J. M., Maximo, M. R. O. A., & Galvão, R. K. H. (2020). Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. International Journal of Robust and Nonlinear Control, 30(14), 5464–5491. https://doi.org/10.1002/rnc.5092

    Article  MathSciNet  Google Scholar 

  • Beard, R., & McLain, T. W. (2012). Small unmanned aircraft: Theory and practice. Princeton University Press.

    Book  Google Scholar 

  • Bemporad, A., & Morari, M. (1999). Control of systems integrating logic, dynamics, and constraints. Automatica, 35(3), 407–427.

    Article  MathSciNet  Google Scholar 

  • Bonami, P., Olivares, A., & Staffetti, R. (2023). Nonlinear model predictive control schemes for obstacle avoidance. Journal of Control, Automation and Electrical Systems, 34, 891–906.

    Article  Google Scholar 

  • Culligan, K., Valenti, M., Kuwata, Y., & How, J. P. (2007). Three-dimensional flight experiments using on-line mixed-integer linear programming trajectory optimization. In 2007 American control conference, New York, NY, USA (pp. 5322–5327).

  • Fereydoon Diba, A. A., & Esmailzadeh, E. (2014). Optimized robust cruise control system for an electric vehicle. Systems Science & Control Engineering, 2(1), 175–182. https://doi.org/10.1080/21642583.2014.891956

    Article  Google Scholar 

  • Gurobi Optimization LLC.: Gurobi optimizer reference manual. http://www.gurobi.com.

  • Ioan, D., Prodan, I., Olaru, S., Stoican, F., & Niculescu, S. I. (2021). Mixed-integer programming in motion planning. Annual Reviews in Control, 51, 65–87.

    Article  MathSciNet  Google Scholar 

  • Kiefer, T., Graichen, K., & Kugi, A. (2010). Trajectory tracking of a 3DOF laboratory helicopter under input and state constraints. IEEE Transactions on Control Systems Technology, 18(4), 944–952.

    Article  Google Scholar 

  • Lopes, R. V., Galvão, R. K. H., Milhan, A., Becerra, V., & Yoneyama, T. (2006). Modelling and constrained predictive control of a 3DOF helicopter. In Proceedings of 16th Congresso Brasileiro de Aut (pp. 429 – 434).

  • Lu, L., & Maciejowski, J. (2020). Self-triggered MPC with performance guarantee using relaxed dynamic programming. Automatica, 114, 108803.

    Article  MathSciNet  Google Scholar 

  • Ma, C. S., & Miller, R. H. (2006). MILP optimal path planning for real-time applications. In 2006 American control conference Minneapolis, MN, USA (pp. 4945–4950).

  • Maciejowski, J. M. (2002). Predictive control with constraints (pp. 50–53). Prentice Hall.

    Google Scholar 

  • Maia, M. H. (2008). Controle Preditivo Robusto de um Helicóptero com três graus de liberdade sujeito a perturbações externas. Instituto Tecnológico de Aeronáutica.

    Google Scholar 

  • Mendoza-Soto, J. L., Alvarez-Icaza, L., & Rodríguez-Cortés, H. (2018). Constrained generalized predictive control for obstacle avoidance in a quadcopter. Robotica, 36(9), 1363–1385.

    Article  Google Scholar 

  • Morrison, D. R., Jacobson, S. H., Sauppe, J. J., & Sewell, E. C. (2016). Branch-and-bound algorithms: A survey of recent advances in searching, branching, and pruning. Discrete Optimization, 19, 79–102.

    Article  MathSciNet  Google Scholar 

  • Nise, N. S. (2015). Control systems engineering (7th ed.). Wiley.

    Google Scholar 

  • Potdar, N. D., de Croon, G. C. H. E., & Alonso-Mora, J. (2020). Online trajectory planning and control of a MAV payload system in dynamic environments. Autonomous Robots, 44, 1065–1089.

    Article  Google Scholar 

  • Prodan, I., Stoican, F., Olaru, S., & Niculescu, S. (2012). Enhancements on the hyperplanes arrangements in mixed-integer programming techniques. Journal of Optimization Theory and Applications, 154, 549–572.

    Article  MathSciNet  Google Scholar 

  • Richards, A., & How, J. P. (2002). Aircraft trajectory planning with collision avoidance using mixed integer linear programming. In Proceedings of the 2002 American control conference, Anchorage, AK, USA (Vol. 3, pp. 1936–1941).

  • Richards, A., & How, J. P. (2003). Model predictive control of vehicle maneuvers with guaranteed completion time and robust feasibility. In Proceedings of the 2003 American control conference (Vol. 5, pp. 4034–4040).

  • Richards, A., & How, J. P. (2005). Mixed-integer programming for control. In Proceedings of the 2005, American control conference, 2005 (Vol. 4, pp. 2676–2683).

  • Richards, A., Kuwata, Y., & How, J. P. (2003). Experimental demonstrations of real-time MILP control. In Proceedings of the AIAA guidance, navigation, and control conference.

  • Richards, A., & How, J. P. (2006). Robust variable horizon model predictive control for vehicle maneuvering. International Journal of Robust and Nonlinear Control, 16, 333–351.

  • Richards, A., & Turnbull, O. (2015). Inter-sample avoidance in trajectory optimizers using mixed-integer linear programming. International Journal of Robust and Nonlinear Control, 25(4), 521–526.

  • Schouwenaars, T., De Moor, B., Feron, E., & How, J. P. (2001). Mixed integer programming for multi-vehicle path planning. In 2001 European control conference Porto, Portugal (pp. 2603–2608).

  • Schouwenaars, T., Valenti, M., Feron, E., & How, J. (2005). Implementation and flight test results of MILP-based UAV guidance. In 2005 IEEE aerospace conference, m Sky, MT, USA (pp. 1 – 13).

  • Stoican, F., Nicu, T. G., & Prodan, I. (2022). A mixed-integer MPC with polyhedral potential field cost for obstacle avoidance. In 2022 American control conference (pp. 2039–2044).

  • Taamallah, S., Bombois, X., & Van den Hof, P. M. J. (2017). Trajectory planning and trajectory tracking for a small-scale helicopter in autorotation. Control Engineering Practice, 58, 88–106.

    Article  Google Scholar 

  • Tang, L., Wang, H., Liu, Z., & Wang, Y. (2021). A real-time quadrotor trajectory planning framework based on B-spline and nonuniform kinodynamic search. Journal of Field Robotics, 38(3), 452–475.

    Article  Google Scholar 

  • Vijayan, N. M., Johnson, M. S., & Jacob, J. (2021). Convex-optimization-based constrained control strategy for 3-DOF tandem helicopter using feedback linearization. Journal of Optimization Theory and Applications, 191, 736–755.

    Article  MathSciNet  Google Scholar 

  • Weintraub, I., Garcia, E., & Pachter, M. (2020). Optimal guidance strategy for the defense of a non-manoeuvrable target in 3-dimensions. IET Control Theory and Applications, 14, 1531–1538.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. Angelo Caregnato-Neto acknowledges the support of Conselho Nacional de Desenvolvimento Científico (CNPQ) Grant (133978/2017-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Caregnato-Neto.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Dynamics Models

The following nonlinear model, proposed in Lopes et al. (2006) and enhanced in Maia (2008), is considered

$$\begin{aligned} \dot{x}_1&= x_2,\\ \dot{x}_2&= \lambda _{16} \left\{ \lambda _1 \left( V_f^2 - V_b^2 \right) + \lambda _2 \left( V_f - V_b \right) - \nu _2 x_2 \right\} , \\ \dot{x}_3&= x_4,\\ \dot{x}_4&= x_6^2 \left\{ \lambda _3 \sin (2x_3) + \lambda _4 \cos (2x_3) \right\} \\&\quad + \left\{ \lambda _7 \left( V_f^2 + V_b^2 \right) + \lambda _8 \left( V_f + V_b \right) \right\} \cos (x_1),\\&\quad + \ \lambda _6 \cos (x_3) + \lambda _5 \sin (x_3)\\ \dot{x}_5&= x_6,\\ \dot{x}_6&= \left\{ \lambda _{13} + \lambda _{14}\sin (2x_3) + \lambda _{15} \cos (2x_3) \right\} ^{-1} \cdot \{ \nu _1 \\&\quad -\nu _3 x_6 + \left[ \lambda _9 \left( V_f^2 + V_b^2 \right) + \lambda _{10} (V_f + V_b) \right] \sin (x_1) \\&\quad + x_4x_6 \left[ \lambda _{11}\sin (2x_3) + \lambda _{12} \cos (2x_3) \right] \} \end{aligned}$$

where \(x_1,x_3,x_5 \in \mathbb {R}\) represent the pitch, elevation, and travel angles, respectively; \(x_2, x_4, x_6 \in \mathbb {R}\) are their respective time derivatives; \(\lambda _i \in \mathbb {R},\ i=\{1,\dots ,16\}\) and \(\nu _1, \nu _2, \nu _3 \in \mathbb {R}\) are model parameters. The system is linearized around the equilibrium point \(x_{1,eq}=x_{5,eq}=0^\circ \), \(x_{3,eq}=27^\circ \), \(x_{2,eq}=x_{4,eq}=x_{6,eq}=0^\circ /s\), \(V_{f,eq} = V_{b,eq}= 2.97\) V, which corresponds to a position where the arm of the helicopter is parallel to its supporting table (Afonso & Galvão, 2010). The following state space model, as in (1) and (2), is obtained

$$\begin{aligned}&\varvec{\Gamma } = \begin{bmatrix} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} -0.753 &{} 0 &{} 0 &{}0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0\\ 0 &{} 0 &{} -1.0389 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1\\ -1.3426 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0.4377 \end{bmatrix},\\&\varvec{\Theta } = \begin{bmatrix} 0 &{} 0\\ 2.966 &{} -2.966\\ 0 &{} 0\\ 0.4165 &{} 0.4165\\ 0 &{} 0\\ 0 &{} 0 \end{bmatrix}, \ \varvec{\Lambda } = \begin{bmatrix} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0\\ \end{bmatrix}. \end{aligned}$$

Appendix B Frequency Experiment Data

Table 1 provides all data collected during the frequency experiment.

Table 1 Frequency and corresponding magnitude and phase measured during the experiments

Appendix C Collision Avoidance Constraints

This appendix provides details on the implementation of (20) and the corner-cutting constraint on a MIP model. We start by presenting the halfspace representation of the polyhedral obstacles, \(\forall c \in \{1,\dots ,n_o\}\),

$$\begin{aligned} \mathcal {O}_c = \{ \textbf{r} \in \mathbb {R}^2\ \vert \ \textbf{P}_c\textbf{r} \le \textbf{q}_c \}, \end{aligned}$$
(C1)

where \(\textbf{P}_c \in \mathbb {R}^{n_{s,c} \times 2}\), \(\textbf{q}_c \in \mathbb {R}^{n_{s,c}}\) with \(n_{s,c}\) being the number of sides of the polyhedron representing the c-th obstacle. Then, the collision avoidance constraints are encoded using the “Big-M” method as, \(\forall \ell \in \{0,\dots ,N_\textrm{max} \}\), \(\forall c \in \{1,\dots ,n_o\}\),

$$\begin{aligned}&\textbf{P}_c \textbf{y}_e(\ell \vert k) \ge \textbf{q}_c - ( \textbf{1}_{n_{s,c}} - \textbf{b}^\textrm{obs}_c(\ell \vert k) )M \nonumber \\&\quad + \textbf{1}_{n_{s,c}}\sum _{z=0}^{\ell -1}b^{hor}(z \vert k)M + \textbf{1}_{n_{s,c}}\epsilon \end{aligned}$$
(C2)
$$\begin{aligned}&\sum _{v=0}^{n_{s,c}} b^\textrm{obs}_{c,v}(\ell \vert k) \ge 1 \end{aligned}$$
(C3)

where \(\epsilon >0\) and with \(\textbf{b}_c^\textrm{obs} = [b^\textrm{obs}_{c,1},b^\textrm{obs}_{c,2},\dots , b^\textrm{obs}_{c,n_{s,c}}]^\top \) and \(b^{hor} \in \{0,1\}\) being the obstacle and horizon binary variables, respectively. The reader is referred to Afonso et al. (2020) for further details. The corner-cutting constraint is similar, \(\forall \ell \in \{0,\dots ,N_\textrm{max}-1 \}\), \(\forall c \in \{1,\dots ,n_o\}\)

$$\begin{aligned}&\textbf{P}_c \textbf{y}_e(\ell +1 \vert k) \le \textbf{q}_c + ( \textbf{1}_{n_{s,c}} - \textbf{b}^\textrm{obs}_c(\ell \vert k) )M \nonumber \\&\quad + \textbf{1}_{n_{s,c}}\sum _{z=0}^{\ell -1}b^{hor}(z \vert k)M + \textbf{1}_{n_{s,c}}\epsilon , \end{aligned}$$
(C4)

with the main distinction being the implementation of the collision avoidance constraint for the position at time step \(\textbf{y}_e(\ell +1\vert k)\) using the binary from the previous time step \(\textbf{b}^\textrm{obs}(\ell \vert k)\). More details are presented in Richards and Turnbull (2015).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caregnato-Neto, A., Afonso, R.J.M. Mixed-Integer MPC for Closed-Loop Motion Planning and Flight Control of a Laboratory Helicopter. J Control Autom Electr Syst (2024). https://doi.org/10.1007/s40313-024-01079-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40313-024-01079-9

Keywords

Navigation