Skip to main content
Log in

Model of Five-Phase Permanent Magnet Synchronous Machines Including the Third Harmonic of the Airgap Induction

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

We present an analytical model of permanent-magnet five-phase synchronous machines including the third space harmonic of the airgap induction, which is generally disregarded by most authors, despite its relevance for the estimation of the machine behavior. Firstly, we address the numerical estimation of the self and mutual inductances required by the model using the machine dimensions and winding characteristics. Afterward, we derive a model in the stator reference frame, which is subsequently simplified through complex coordinate transformations, thus resulting in a set of simpler, decoupled equations expressed in the stator reference frame. Then, to test and validate the model, it was applied to two prototype machines available in our laboratory. We designed the rotor of these two machines so that each has a different amplitude for the third harmonic of the airgap induction. Finally, to further validate the model, analytical results were compared with corresponding results obtained through finite element analyses and also through practical experiments, from which an excellent agreement emerged between the three types of results. The results obtained with the finite element method and through experiments also proved not only that the model is consistent and valid, but also that it can be used to predict the machine behavior under normal and faulty operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Abdel-Khalik, A. S., Ahmed, S., & Massoud, A. M. (2016). Steady-state mathematical modeling of a five-phase induction machine with a combined star/pentagon stator winding connection. IEEE Transactions on Industrial Electronics, 63(3), 1331–1343. https://doi.org/10.1109/TIE.2015.2493151

    Article  Google Scholar 

  • Abdel-Khalik, A. S., Hamdy, R. A., Massoud, A. M., et al. (2019). Low-order space harmonic modeling of asymmetrical six-phase induction machines. IEEE Access, 7, 6866–6876. https://doi.org/10.1109/ACCESS.2018.2889044

    Article  Google Scholar 

  • Bianchi, N., & Bolognani, S. (1998). Magnetic models of saturated interior permanent magnet motors based on finite element analysis. In Conference record of 1998 IEEE industry applications conference. Thirty-Third IAS annual meeting (Cat. No.98CH36242) (vol. 1, pp. 27–34). https://doi.org/10.1109/IAS.1998.732255

  • Bo, Z., Jimin, Z., Guiqing, H., et al. (2011). Asymmetry of inductance and torque ripple of multi-unit permanent magnet synchronous motor. In 2011 International conference on electrical machines and systems (pp. 1–4). https://doi.org/10.1109/ICEMS.2011.6073960

  • Brauer, H. J., Hennen, M. D., & De Doncker, R. W. (2011). Control for polyphase switched reluctance machines to minimize torque-ripple and decrease ohmic machine losses. IEEE Transactions on Power Electronics. https://doi.org/10.1109/TPEL.2011.2161332

    Article  Google Scholar 

  • Cao, B., Grainger, B. M., Wang, X., et al. (2021). Direct torque model predictive control of a five-phase permanent magnet synchronous motor. IEEE Transactions on Power Electronics, 36(2), 2346–2360. https://doi.org/10.1109/TPEL.2020.3011312

    Article  Google Scholar 

  • Chen, J., Li, J., Qu, R., et al. (2018). Magnet-frozen-permeability FEA and DC-biased measurement for machine inductance: Application on a variable-flux pm machine. IEEE Transactions on Industrial Electronics, 65(6), 4599–4607. https://doi.org/10.1109/TIE.2017.2772165

    Article  Google Scholar 

  • Chen, Y., Zhu, Z., & Howe, D. (2005). Calculation of d- and q-axis inductances of pm brushless ac machines accounting for skew. IEEE Transactions on Magnetics, 41(10), 3940–3942. https://doi.org/10.1109/TMAG.2005.854976

    Article  Google Scholar 

  • Chomat, M., Schreier, L., & Bendl, J. (2015). Effect of stator winding configurations on operation of converter fed five-phase induction machine. In 2015 International conference on electrical drives and power electronics (EDPE) (pp 488–496). https://doi.org/10.1109/EDPE.2015.7325343

  • Fu, J. R., & Lipo, T. (1993). Disturbance free operation of a multiphase current regulated motor drive with an opened phase. In Industry applications society annual meeting, 1993, conference record of the 1993 IEEE (vol. 1, pp. 637–644). https://doi.org/10.1109/IAS.1993.298884

  • Gieras, J. (2010). Permanent magnet motor technology: Design and applications. [Electrical and computer engineering, CRC PressINC, Boca Raton,USA. http://books.google.com.br/books?id=8b6yPQAACAAJ

  • Hendershot, J., Hendershot, J., & Miller, T. (2010). Design of brushless permanent-magnet machines. Motor Design Books, LLC. http://books.google.com/books?id=n833QwAACAAJ

  • Hussain, T., Ahmed, S., Iqbal, A., et al. (2008). Five-phase induction motor behaviour under faulted conditions. In India conference, 2008. INDICON 2008. Annual IEEE (pp. 509–513). https://doi.org/10.1109/INDCON.2008.4768776

  • Jacobina, C., Freitas, I., Oliveira, T., et al. (2004). Fault tolerant control of five-phase ac motor drive. In Power electronics specialists conference, 2004. PESC 04. 2004 IEEE 35th annual (vol. 5, pp. 3486–3492). https://doi.org/10.1109/PESC.2004.1355091

  • Kestelyn, X., & Semail, E. (2011). A vectorial approach for generation of optimal current references for multiphase permanent magnet synchronous machines in real-time. IEEE Transactions on Industrial Electronics. https://doi.org/10.1109/TIE.2011.2119454

    Article  Google Scholar 

  • Kim, W. H., Kim, M. J., Lee, K. D., et al. (2014). Inductance calculation in IPMSM considering magnetic saturation. IEEE Transactions on Magnetics, 50(1), 1–4. https://doi.org/10.1109/TMAG.2013.2277586

    Article  Google Scholar 

  • Klingshirn, E. (1983). High phase order induction motors—part I-description and theoretical considerations. IEEE Transactions on Power Apparatus and Systems PAS, 102(1), 47–53. https://doi.org/10.1109/TPAS.1983.317996

    Article  Google Scholar 

  • Klingshirn, E. (1983). High phase order induction motors—part II-experimental results. IEEE Transactions on Power Apparatus and Systems PAS, 102(1), 54–59. https://doi.org/10.1109/TPAS.1983.317997

    Article  Google Scholar 

  • Lee, J. Y., Lee, S. H., Lee, G. H., et al. (2006). Determination of parameters considering magnetic nonlinearity in an interior permanent magnet synchronous motor. IEEE Transactions on Magnetics, 42(4), 1303–1306. https://doi.org/10.1109/TMAG.2006.871951

    Article  Google Scholar 

  • Levi, E. (2008). Multiphase electric machines for variable-speed applications. IEEE Transactions on Industrial Electronics, 55(5), 1893–1909. https://doi.org/10.1109/TIE.2008.918488

    Article  Google Scholar 

  • Levi, E., Bojoi, R., Profumo, F., et al. (2007). Multiphase induction motor drives—a technology status review. IET Electric Power Applications, 1(4), 489–516. https://doi.org/10.1049/iet-epa:20060342

    Article  Google Scholar 

  • Li, Z., Huang, X., Wu, L., et al. (2019). Open-circuit field prediction of interior permanent-magnet motor using hybrid field model accounting for saturation. IEEE Transactions on Magnetics, 55(7), 1–7. https://doi.org/10.1109/TMAG.2019.2907023

    Article  Google Scholar 

  • Long, L., Sun, T., & Liang, J. (2020). Five phase permanent magnet synchronous motor decoupled model with dual frame frequency adaptive flux observer. Energy Reports, 6, 1403–1408. https://doi.org/10.1016/j.egyr.2020.11.010

    Article  Google Scholar 

  • Meessen, K. J., Thelin, P., Soulard, J., et al. (2008). Inductance calculations of permanent-magnet synchronous machines including flux change and self- and cross-saturations. IEEE Transactions on Magnetics, 44(10), 2324–2331. https://doi.org/10.1109/TMAG.2008.2001419

    Article  Google Scholar 

  • Miller, T. (1989). Brushless permanent-magnet and reluctance motor drives. Monographs in electrical and electronic engineering. Clarendon Press.

    Google Scholar 

  • Nanoty, A., & Chudasama, A. (2011). Design of multiphase induction motor for electric ship propulsion. In Electric ship technologies symposium (ESTS), 2011 IEEE (pp. 283 –287). https://doi.org/10.1109/ESTS.2011.5770882

  • Parsa, L., & Toliyat, H. (2004). Fault-tolerant five-phase permanent magnet motor drives. In Conference record of the 2004 IEEE industry applications conference, 2004. 39th IAS Annual Meeting (vol. 2, pp. 1048–1054). https://doi.org/10.1109/IAS.2004.1348542

  • Parsa, L., & Toliyat, H. (2005). Five-phase permanent-magnet motor drives. IEEE Transactions on Industry Applications, 41(1), 30–37. https://doi.org/10.1109/TIA.2004.841021

    Article  Google Scholar 

  • Parsa, L., Toliyat, H. A., & Goodarzi, A. (2007). Five-phase interior permanent-magnet motors with low torque pulsation. IEEE Transactions on Industry Applications, 43(1), 40–46. https://doi.org/10.1109/TIA.2006.887235

    Article  Google Scholar 

  • Pavithran, K., Parimelalagan, R., & Krishnamurthy, M. (1988). Studies on inverter-fed five-phase induction motor drive. IEEE Transactions on Power Electronics, 3(2), 224–235. https://doi.org/10.1109/63.4353

    Article  Google Scholar 

  • Pereira, L. (1997). Comparison between the dc machine and the auto-commutated synchronous machine. PhD thesis, University of Kaiserslautern (in German).

  • Pereira, L. A., Scharlau, C., Pereira, L. F. A., et al. (2006). General model of a five-phase induction machine allowing for harmonics in the air gap field. IEEE Transactions on Energy Conversion, 21(4), 891–899.

    Article  Google Scholar 

  • Pereira, L. A., Haffner, S., Pereira, L. F. A., et al. (2013a). Performance comparison of five phase and three phase induction machines under steady state including losses and saturation. In Industrial electronics society, IECON 2013—39th annual conference of the IEEE (pp. 3036–3041). https://doi.org/10.1109/IECON.2013.6699613

  • Pereira, L. A., Haffner, S., Pereira, L. F. A., et al. (2013b). Torque capability of high phase induction machines with sinusoidal and trapezoidal airgap field under steady state. In IECON 2013—39th Annual conference of the IEEE industrial electronics society (pp. 3183–3188). https://doi.org/10.1109/IECON.2013.6699637

  • Pereira, L. A., Haffner, S., Pereira, L. F. A., et al. (2015). Parameterized model and performance of five-phase induction machines including losses and saturation. Journal of Control, Automation and Electrical Systems, 26(3), 255–271. https://doi.org/10.1007/s40313-015-0169-3

    Article  Google Scholar 

  • Pyrhonen, J., Jokinen, T., & Hrabovcova, V. (2013). Design of electrical machines. John Wiley Sons.

    Book  Google Scholar 

  • Richter, R. (1963). Elektrische Maschinen—Zweiter Band—Synchronmaschine und Einankerumformer. Birkhäuser Verlag.

    Google Scholar 

  • Richter, R. (1967). Elektrische Maschinen-Erster Band–Allgemeine Berechnungselemente-Die Gleichstrommaschine. Birkhäuser Verlag.

    Book  Google Scholar 

  • Sadeghi, S., & Parsa, L. (2011). Multiobjective design optimization of five-phase Halbach array permanent-magnet machine. IEEE Transactions on Magnetics, 47(6), 1658–1666. https://doi.org/10.1109/TMAG.2011.2106217

    Article  Google Scholar 

  • Sahu, S., Nayak, B., & Dash, R. N. (2021). Modeling and vector control of five phase surface permanent magnet synchronous motor. In 2021 Innovations in Energy Management and Renewable Resources(52042) (pp. 1–4). https://doi.org/10.1109/IEMRE52042.2021.9387021

  • Scharlau, C., Pereira, L. F. A., Pereira, L. A., et al. (2008). Performance of a five-phase induction machine with optimized air gap field under open loop \(v\)/\(f\) control. IEEE Transactions on Energy Conversion, 23(4), 1046–1056.

    Article  Google Scholar 

  • Schreier, L., Bendl, J., & Chomat, M. (2013). Comparison of five-phase induction machine operation with various stator-winding arrangements. In IECON 2013—39th Annual conference of the IEEE industrial electronics society (pp 2685–2690). https://doi.org/10.1109/IECON.2013.6699555

  • Schreier, L., Bendl, J., & Chomat, M. (2017). Operation of five-phase induction motor after loss of one phase of feeding source. Electrical Engineering, 99(1), 9–18. https://doi.org/10.1007/s00202-016-0370-9

    Article  Google Scholar 

  • Sneessens, C., Labbe, T., Baudart, F., et al. (2009). Modelling and torque control of a five-phase permanent-magnet synchronous motor using tooth-concentrated winding technology. In 2009 8th International symposium on advanced electromechanical motion systems and electric drives joint symposium (pp. 1–6). https://doi.org/10.1109/ELECTROMOTION.2009.5259107

  • Sun, T., Kwon, S. O., & Lee, S. H., et al. (2008). Investigation and comparison of inductance calculation methods in interior permanent magnet synchronous motors. In 2008 International conference on electrical machines and systems (pp. 3131–3136).

  • Tani, A., Mengoni, M., Zarri, L., et al. (2012). Control of multiphase induction motors with an odd number of phases under open-circuit phase faults. IEEE Transactions on Power Electronics, 27(2), 565–577. https://doi.org/10.1109/TPEL.2011.2140334

    Article  Google Scholar 

  • Tao, T., Zhao, W., Du, Y., et al. (2020). Simplified fault-tolerant model predictive control for a five-phase permanent-magnet motor with reduced computation burden. IEEE Transactions on Power Electronics, 35(4), 3850–3858. https://doi.org/10.1109/TPEL.2019.2934578

    Article  Google Scholar 

  • Toliyat, H. (1998). Analysis and simulation of five-phase variable-speed induction motor drives under asymmetrical connections. IEEE Transactions on Power Electronics, 13(4), 748–756. https://doi.org/10.1109/63.704150

  • Toliyat, H., Lipo, T., & White, J. (1991). Analysis of a concentrated winding induction machine for adjustable speed drive applications. I. motor analysis. IEEE Transactions on Energy Conversion, 6(4), 679–683. https://doi.org/10.1109/60.103641

    Article  Google Scholar 

  • Toliyat, H., Lipo, T., & White, J. (1991). Analysis of a concentrated winding induction machine for adjustable speed drive applications. II. motor design and performance. IEEE Transactions on Energy Conversion, 6(4), 684–692. https://doi.org/10.1109/60.103642

  • Walker, J., Dorrell, D., & Cossar, C. (2005). Flux-linkage calculation in permanent-magnet motors using the frozen permeabilities method. IEEE Transactions on Magnetics, 41(10), 3946–3948. https://doi.org/10.1109/TMAG.2005.854973

    Article  Google Scholar 

  • Wang, P., Zheng, P., Sui, Y., et al. (2014). Design and analytical inductance calculations of five-phase fault-tolerant permanent-magnet machine. In 2014 17th International conference on electrical machines and systems (ICEMS), (pp. 1639–1642). https://doi.org/10.1109/ICEMS.2014.7013740

  • Ward, E., & Härer, H. (1969). Preliminary investigation of an invertor-fed 5-phase induction motor. In Proceedings of the institution of electrical engineers, IET (pp. 980–984).

  • White, D. C. S., & Woodson, H. H. (1968). Electromechanical energy conversion. The MIT Press.

    Google Scholar 

  • Wu, S., Shi, T., Chen, Z., et al. (2022). Analytical modeling of equivalent air-gap length and inductance calculation of interior permanent magnet motors. IEEE Transactions on Magnetics, 58(2), 1–11. https://doi.org/10.1109/TMAG.2021.3131526

    Article  Google Scholar 

  • Zhang, Z. (2021). A robust non-permanent magnet five-phase synchronous reluctance traction motor. In 2021 IEEE Transportation Electrification Conference and Expo (ITEC) (pp. 1–6). https://doi.org/10.1109/ITEC51675.2021.9490116

  • Zheng, P., Sui, Y., Zhao, J., et al. (2011). Investigation of a novel five-phase modular permanent-magnet in-wheel motor. IEEE Transactions on Magnetics, 47(10), 4084–4087. https://doi.org/10.1109/TMAG.2011.2150207

    Article  Google Scholar 

  • Zhu, Z., & Howe, D. (1997). Winding inductances of brushless machines with surface-mounted magnets. In 1997 IEEE International electric machines and drives conference record (pp. WB2/2.1–WB2/2.3). https://doi.org/10.1109/IEMDC.1997.604305

Download references

Acknowledgements

This study was financed in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. This study was also supported by Foundation for Research Support of the State of Rio Grande do Sul (FAPERGS), (Program Pesquisador Gaúcho—2022) under the grant number 21/2551-0002155-1. Finally, the authors also thank the National Council for Scientific and Technological Development (CNPq) for the financial support under grants numbers 306126/2019-2, 404491/2021-9, and 305036/2022-0, and WEG Equipamentos Elétricos (Jaraguá do Sul, Brazil) for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís Alberto Pereira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Main Dimensions of the Prototype Machines

The main dimensions of the two prototype machines of 1.5 KW designed and currently available in our laboratory at UFRGS can be seen in Figs 19 and 20, in which Fig. 19 illustrates the stator dimensions and details of the stator slots, while Fig. 20 details the rotor dimensions. Note also that both machines have been used to test and validate the proposed model.

Fig. 19
figure 19

Main dimensions of stator (a) and stator slot (b)

Fig. 20
figure 20

Main dimensions a of the rotor, b rotor slots where the permanent magnets are located, and c permanent magnets

Appendix B: Iron and Permanent Magnet Characteristics

In Fig. 21, we present the main magnetic characteristic (induction B versus magnetic field H) of the iron parts of the two prototypes used in this paper for numerical and experimental validation of the proposed analytical model. In addition, Fig. 22 shows the demagnetization curve of permanent magnets (N38UH) at a temperature of \(22\,^\circ \)C, where the remanent induction and the coercive force are in red.

Fig. 21
figure 21

Curve of magnetization of the iron parts used in the prototypes

Fig. 22
figure 22

Second quadrant curve of the permanent magnets

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, L.A., Branco, G.G.C., Nicol, G. et al. Model of Five-Phase Permanent Magnet Synchronous Machines Including the Third Harmonic of the Airgap Induction. J Control Autom Electr Syst 35, 191–211 (2024). https://doi.org/10.1007/s40313-023-01056-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-023-01056-8

Keywords

Navigation