Skip to main content
Log in

Force/position Control of Constrained Mobile Manipulators with Fast Terminal Sliding Mode Control and Neural Network

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

The purpose of this article is to present a fast terminal sliding mode control scheme for constrained mobile manipulators with both holonomic and non-holonomic constraints while taking uncertainties and external disturbances into account. Existing techniques cannot manage this kind of system because of the unavoidable errors in a mobile manipulator’s dynamical model. In order to improve position/force tracking performance of constrained mobile manipulators, a control scheme is presented that combines the advantages of fast terminal sliding mode control and neural networks. Without the requirement for offline training, the manipulator’s unknown dynamics are learned using a radial basis function neural network. Using an adaptive bound component, the bounds on uncertainties and neural network reconstruction error are quantified. The stability of the system and the convergence of the tracking errors are investigated using the Lyapunov theory. Analyzed simulation results indicate the proposed controller’s robust performance in a variety of circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  • Aguilart, L.E., Hamelt, T., & Souerest, P. (1997). Robust path following control for wheeled robots via sliding mode techniques. In Proceedings of the 1997 IEEE/RSJ international conference on intelligent robot and systems. Innovative Robotics for Real-World Applications. IROS ’97, 3, 1389–1395.

  • Bloch, A., & Drakunov, S. (1995). Tracking in nonholonomic dynamic systems via sliding modes. In Proceedings of the 34th conference on decision and control. 2103–2106.

  • Boukens, M., & Boukabou, A. (2017). Design of an intelligent optimal neural network-based tracking controller for nonholonomic mobile robot systems. Neuro-computing, 226, 46–57.

    Google Scholar 

  • Boukens, M., Boukabou, A., & Chadli, M. (2017). Robust adaptive neural network based trajectory tracking control approach for nonholonomic electrically driven mobile robots. Robotics and Autonomous System, 92, 30–40.

    Article  Google Scholar 

  • Chung, J. H., & Velinsky, S. A. (1998). Modeling and control of a mobile manipulator. Robotica, 16(6), 607–613.

    Article  Google Scholar 

  • Dao, Q. T., Mai, D. H., & Nguyen, D. K. (2022). Adaptive parameter integral sliding mode control of pneumatic artificial muscles in antagonistic configuration. Journal of Control, Automation and Electrical Systems, 33, 1116–1124.

    Article  Google Scholar 

  • Dong, W. (2002). On trajectory and force tracking control of constrained mobile manipulators with parameter uncertainty. Automatica, 38, 1475–1484.

    Article  MathSciNet  MATH  Google Scholar 

  • Dong, X., Dongbin, Z., Jianqiang, Y., & Xiangmin, T. (2009). Trajectory tracking control of omnidirectional wheeled mobile manipulators: Robust neural network-based sliding mode approach. IEEE Transactions on Systems, Man, and Cybernetics Part B (Cybernetics), 39, 788–799.

    Article  Google Scholar 

  • Han, S., Ha, H., Zhao, Y., & Lee, J. (2017). Assumed model feedforward sliding mode control for a wheeled mobile robot with 3-dof manipulator. Journal of Mechanical Science and Technology, 31(3), 1463–1475.

    Article  Google Scholar 

  • Hoang, N. B., & Kang, H. J. (2016). Neural network-based adaptive tracking control of mobile robots in the presence of wheel slip and external disturbance force. Neurocomputing, 188, 12–22.

    Article  Google Scholar 

  • Jorge, A., Chacal, B., & Ramirez, H. S. (1994). On the sliding mode control of wheeled mobile robots. IEEE, 2, 1938–1943.

    Google Scholar 

  • Kumar, Ruchika, et al. (2019). Finite time control scheme for robot manipulators using fast terminal sliding mode control and RBFNN. International Journal of Dynamics and Control, 1(7), 758–766.

    MathSciNet  Google Scholar 

  • Kumar, N., Panwar, V., Borm, J. H., & Chai, J. (2014). Enhancing precision performance of trajectory tracking controller for robot manipulators using RBFNN and adaptive bound. Applied Mathematics and Computation, 231, 320–328.

    Article  MathSciNet  MATH  Google Scholar 

  • Lanzon, & Richards, R. J. (1999). Trajectory/force control of robot manipulators using sliding mode and adaptive control. Proceedings of the American Control Conference, 3, 1940–1944.

    Google Scholar 

  • Lee, M. J., & Choi, Y. K. (2004). An adaptive neurocontroller using RBFN for robot manipulators. IEEE Transactions on Industrial Electronics, 51(3), 711–717.

    Article  Google Scholar 

  • Lewis F., Jagannathan S., & Yesildirek, A. (1999). Neural network control of robot manipulators and nonlinear systems, Taylor and Francis.

  • Lewis, F. W., Jagannathan, S., & Yesildirak, A. (1998). Neural network control of robot manipulators and non-linear systems. CRC Press.

    Google Scholar 

  • Li, J. F., & Xiang, F. H. (2021). RBF network adaptive sliding mode control of ball and plate system based on reaching law. Arabian Journal of Science and Engineering, 47, 9393–9404.

    Article  Google Scholar 

  • Li, Z., Gu, J., Ming, A., Xu, C., & Shimojo, M. (2006). Intelligent compliant force/motion control of nonholonomic mobile manipulator working on the nonrigid surface. Neural Computing and Applications, 15, 204–216.

    Article  Google Scholar 

  • Li, Z., Ge, S. S., & Ming, A. (2007a). Adaptive robust motion/force control of holonomic-constrainted nonholonomic mobile manipulator. IEEE Transactions on Systems, Man and Cybernetics, 37(3), 607–616.

    Article  Google Scholar 

  • Li, Z., Yang, C., Luo, J., Wang, Z., & Ming, A. (2007b). Robust motion /force control of nonholonomic mobile manipulator using hybrid joints. Advanced Robotics, 21(11), 1231–1252.

    Article  Google Scholar 

  • Mai, T., & Wang, Y. (2014). Adaptive force/motion control system based on recurrent fuzzy wavelet CMAC neural networks for condenser cleaning crawler-type mobile manipulator robot. IEEE Transaction on Control Systems Technology, 22(5), 1973–1982.

    Article  Google Scholar 

  • Matraji, I., Al-Durra, Haryono, A., Al-Wahedi, K., & Abou-Khousa, M. (2018). Trajectory tracking control of skid-steered mobile robot based on adaptive second order sliding mode control. Control Engineering Practice, 72, 167–176.

    Article  Google Scholar 

  • Mohamed, B., Damak, T., & Jallouli, M. (2011). Robust adaptive control for mobile manipulators. International Journal of Automation and Computing, 8(1), 8–13.

    Article  MATH  Google Scholar 

  • Panwar, V. (2016). Wavelet neural network-based H\(\infty \) trajectory tracking for robot manipulators using fast terminal sliding mode control. Robotica, 35(7), 1488–1503.

    Article  Google Scholar 

  • Park, J., & Sandberg, J. W. (1991). Universal approximation using radial basis function networks. Neural Computing, 3, 246–257.

    Article  Google Scholar 

  • Pavlov, V., & Timofeyev, A. (1976). Construction and stabilization of programmed movements of a mobile robot-manipulator. Eng. Cybernet, 14, 70–79.

    Google Scholar 

  • Rani, M., Kumar, N., & Singh, H. P. (2018). Efficient position/force control of constrained mobile manipulators. International Journal of Dynamic and Control, 6, 1629–1638.

    Article  MathSciNet  Google Scholar 

  • Ruchika, Kumar, N., & Dinanath. (2019). Non-singular terminal sliding mode control of robot manipulators with \(H_\infty \) trajectory tracking performance. Arabian Journal of Science and Engineering, 44, 9057–9065.

    Article  Google Scholar 

  • Singh, H. P., & Sukavanam, N. (2012). Intelligent robust adaptive trajectory and force tracking controller for holonomic constrained nonholonomic mobile manipulators. Advance Science Letters, 16(1), 313–321.

    Article  Google Scholar 

  • Slotine, J. J. E. (1985). The robust control of robot manipulators. The International Journal of Robotics Research, 4(2), 49–64.

    Article  Google Scholar 

  • Su, C., & Stepanenko. (1994). Robust motion/force control of mechanical systems with classical nonholonomic constraints. IEEE Transactions on Automatic Control, 39(3), 609–614.

    Article  MathSciNet  MATH  Google Scholar 

  • Tang, Y. (1998). Terminal sliding mode control for rigid robots. Automatica, 34, 51–56.

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, X., Wang, Y., & Dang, X. (2014). Robust adaptive sliding-mode control of condenser-cleaning mobile manipulator using fuzzy wavelet neural network. Fuzzy Sets and Systems , 235, 62–82.

    Article  MathSciNet  MATH  Google Scholar 

  • Yanfeng, G., Hua, Z., & Yanhui, Y. (2011). Back-stepping and neural network control of a mobile robot for curved weld seam tracking. Advanced in Control Engineering and Information Science, 15, 38–44.

    Google Scholar 

  • Yang, J. M., & Kim, J. W. (1999). Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots. IEEE Transactions on Robotics and Automation, 15(3), 578–587.

    Article  Google Scholar 

  • Yao, Q. (2021). Synchronization of second-order chaotic systems with uncertainties and disturbances using fixed-time adaptive sliding mode control. Chaos, Solitons and Fractals, 142, 1–10.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruchika, Kumar, N. Force/position Control of Constrained Mobile Manipulators with Fast Terminal Sliding Mode Control and Neural Network. J Control Autom Electr Syst 34, 1145–1158 (2023). https://doi.org/10.1007/s40313-023-01032-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-023-01032-2

Keywords

Navigation