Skip to main content
Log in

Observer-Based Output Feedback Control Using Invariant Polyhedral Sets for Fuzzy T–S Models Under Constraints

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

We propose a systematic design method to compute an observer-based output feedback controller for fuzzy Takagi–Sugeno (T–S) systems with unmeasurable premise variables, subject to state and control constraints, based on the theory of invariant sets. Sufficient conditions are established for a polyhedron defined in the augmented state-space (state + estimation error) to be positively invariant. From these conditions, a bilinear optimization problem is formulated for the simultaneous computation of the gains of the controller and of a positively invariant polyhedron guaranteeing the satisfaction of the constraints. Numerical examples illustrate the effectiveness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ariño, C., Pérez, E., Bedate, F., et al. (2013). Robust polytopic invariant sets for discrete fuzzy control systems. In: 2013 IEEE international conference on fuzzy systems (FUZZ-IEEE), IEEE, pp. 1–7

  • Ariño, C., Perez, E., Sala, A., et al. (2014). Polytopic invariant and contractive sets for closed-loop discrete fuzzy systems. Journal of the Franklin Institute, 351(7), 3559–3576.

    Article  MathSciNet  MATH  Google Scholar 

  • Blanchini, F., Miani, S. (2015). Set-Theoretic Methods in Control, 2nd edn. Birkhäuser Basel

  • Brião, S. L., Pedrosa, M. V., Castelan, E. B., et al. (2018). Explicit computation of stabilizing feedback control gains using polyhedral lyapunov functions. In: 2018 IEEE international conference on automation/XXIII congress of the chilean association of automatic control (ICA-ACCA), IEEE, pp. 1–6

  • Brião, S. L., Castelan, E. B., Camponogara, E., et al. (2021). Output feedback design for discrete-time constrained systems subject to persistent disturbances via bilinear programming. Journal of the Franklin Institute, 358(18), 9741–9770. https://doi.org/10.1016/j.jfranklin.2021.10.024

    Article  MathSciNet  MATH  Google Scholar 

  • Byrd, R. H., Gilbert, J. C., & Nocedal, J. (2000). A trust region method based on interior point techniques for nonlinear programming. Mathematical programming, 89(1), 149–185.

    Article  MathSciNet  MATH  Google Scholar 

  • Byrd, R. H., Gould, N. I., Nocedal, J., et al. (2003). An algorithm for nonlinear optimization using linear programming and equality constrained subproblems. Mathematical Programming, 100(1), 27–48.

    Article  MathSciNet  MATH  Google Scholar 

  • De Souza, C., Leite, VJ., Tarbouriech, S., et al. (2022). A direct parameter-error co-design approach of discrete-time saturated lpv systems. IEEE Transactions on Automatic Control

  • Ding, B. (2011). Dynamic output feedback predictive control for nonlinear systems represented by a takagi-sugeno model. IEEE Transactions on Fuzzy Systems, 19(5), 831–843.

    Article  Google Scholar 

  • Ding, B., & Pan, H. (2016). Dynamic output feedback-predictive control of a Takagi–Sugeno model with bounded disturbance. IEEE Transactions on Fuzzy Systems, 25(3), 653–667.

    Article  Google Scholar 

  • Dórea, C. E. T., & Hennet, J. (1999). (a, b)-invariant polyhedral sets of linear discrete-time systems. Journal of Optimization Theory and Applications, 103(3), 521–542.

    Article  MathSciNet  MATH  Google Scholar 

  • Dórea, C. E. T., Castelan, E. B., & Ernesto, J. G. (2020). Robust positively invariant polyhedral sets and constrained control using fuzzy ts models: A bilinear optimization design strategy. IFAC-PapersOnLine, 53(2), 8013–8018.

    Article  Google Scholar 

  • Ernesto, J. G., Castelan, E. B., dos, Santos G. A. F., et al. (2021). Incremental output feedback design approach for discrete-time parameter-varying systems with amplitude and rate control constraints. In: 2021 IEEE international conference on automation/XXIV congress of the chilean association of automatic control (ICA-ACCA), IEEE, pp. 1–7

  • Feng, G. (2018). Analysis and synthesis of fuzzy control systems: A model-based approach (Vol. 37). CRC Press.

    Book  Google Scholar 

  • Hennet, J. C. (1989). Une extension du lemme de farkas et son application au probleme de régulation linéaire sous contraintes. CR Acad Sci Paris 308(I):415–419

  • Herceg, M., Kvasnica, M., Jones, C., et al (2013) Multi-Parametric Toolbox 3.0. In: Proc. of the European Control Conference, Źurich, Switzerland, pp 502–510, http://control.ee.ethz.chmpt

  • Isidório, I. D., Dórea, C. E. T., Castelan, E. B. (2022). Controle por realimentaçõo de saída baseado em observador de estado para sistemas fuzzy T–S sujeitos a restrições. In: Preprints of the XXIV congresso Brasileiro de Automática (in Portuguese)

  • Nocedal, J. (2006). Knitro: An integrated package for nonlinear optimization. In: Large-scale nonlinear optimization. Springer, pp. 35–60

  • Ping, X., Yao, J., Ding, B. C., et al. (2021). Time-varying tube-based output feedback robust mpc for ts fuzzy systems. IEEE Transactions on Fuzzy Systems

  • Schrijver, A. (1998). Theory of linear and integer programming. Wiley.

    MATH  Google Scholar 

  • Silva, L. F., Leite, V. J., Castelan, E. B., et al. (2020). Local stabilization of nonlinear discrete-time systems with time-varying delay in the states and saturating actuators. Information Sciences, 518, 272–285.

    Article  MathSciNet  MATH  Google Scholar 

  • Silva, L. F., Leite, V. J., Castelan, E. B., et al. (2021). Regional input-to-state stabilization of fuzzy state-delayed discrete-time systems with saturating actuators. Information Sciences, 557, 250–267.

    Article  MathSciNet  MATH  Google Scholar 

  • Song, W., & Liang, J. (2013). Difference equation of Lorenz system. International Journal of Pure and Applied Mathematics, 83(1), 101–110.

    Google Scholar 

  • Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems Man and Cybernetics, 15(1), 116–132. https://doi.org/10.1109/TSMC.1985.6313399

    Article  MATH  Google Scholar 

  • Tanaka, K., Sano, M. (1994). On the concepts of regulator and observer of fuzzy control systems. In: Proceedings of 1994 IEEE 3rd international fuzzy systems conference, IEEE, pp. 767–772

  • Tanaka, K., Wang, H. O. (1997). Fuzzy regulators and fuzzy observers: A linear matrix inequality approach. In: Proceedings of the 36th IEEE conference on decision and control. IEEE, pp. 1315–1320

  • Tanaka, K., & Wang, H. O. (2004). Fuzzy control systems design and analysis: A linear matrix inequality approach. Wiley.

    Google Scholar 

  • Tanaka, K., Ikeda, T., Wang, H. O. (1997). Controlling chaos via model-based fuzzy control system design. In: Proceedings of the 36th IEEE conference on decision and control, IEEE, pp. 1488–1493

  • Tanaka, K., Ikeda, T., & Wang, H. O. (1998). Fuzzy regulators and fuzzy observers: Relaxed stability conditions and LMI-based designs. IEEE Transactions on Fuzzy Systems, 6(2), 250–265.

    Article  Google Scholar 

  • Teixeira, M. C., & Zak, S. H. (1999). Stabilizing controller design for uncertain nonlinear systems using fuzzy models. IEEE Transactions on Fuzzy systems, 7(2), 133–142.

    Article  Google Scholar 

  • Waltz, R. A., & Nocedal, J. (2004). Knitro 2.0 user’s manual. Ziena Optimization, 7, 33–34.

    Google Scholar 

  • Waltz, R. A., Morales, J. L., Nocedal, J., et al. (2006). An interior algorithm for nonlinear optimization that combines line search and trust region steps. Mathematical Programming, 107(3), 391–408.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, H. O., Tanaka, K., & Griffin, M. F. (1996). An approach to fuzzy control of nonlinear systems: Stability and design issues. IEEE Transactions on Fuzzy Systems, 4(1), 14–23.

    Article  Google Scholar 

Download references

Acknowledgements

The works of Carlos E.T. Dórea and Eugênio B. Castelan were supported in part by the National Council for Scientific and Technological Development—Brazil (CNPq), grants \( \# \) 309862/2019-1 and 311567/2021-5, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac D. Isidório.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isidório, I.D., Dórea, C.E.T. & Castelan, E.B. Observer-Based Output Feedback Control Using Invariant Polyhedral Sets for Fuzzy T–S Models Under Constraints. J Control Autom Electr Syst 34, 752–765 (2023). https://doi.org/10.1007/s40313-023-01011-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-023-01011-7

Keywords

Navigation