Skip to main content
Log in

Thermal Analysis of Power Transformers with Different Cooling Systems Using Computational Fluid Dynamics

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This article performs a thermal study through the application of Computational Fluid Dynamics (CFD) of a transformer prototype considering six different cooling configurations. Each configuration was computationally designed and simulated in the ANSYS CFX \(\copyright \) software. It was possible to analyze the temperature data of the hotspot, at the top oil and at the average temperature, thus comparing the thermal performance of each system and implementing the data in a simplified methodology for estimating the transformer lifespan standardized by IEEE C57.100-2011. In addition, the rendering of the results allows visualizing the temperature distribution and, consequently, the performance for each cooling system. Finally, the advantages and disadvantages of each cooling system were summarized, providing useful information for transformer designer’s decision. As some results, the forced air-cooled transformers have a thermal reduction of approximately 8.81% compared to natural air-cooled and the directed oil system transformers have superior cooling performance than forced oil and natural oil. The directed oil and forced air combination means a useful life 52.76% longer than the natural oil and natural air combination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • ABNT (2007). NBR 5356-2. Power transformers–part 2: Temperature rise

  • Ashkezari, A. D., Ma, H., Saha, T. K., & Ekanayake, C. (2013). Application of fuzzy support vector machine for determining the health index of the insulation system of in-service power transformers. IEEE Transactions on Dielectrics and Electrical Insulation, 20(3), 965–973. https://doi.org/10.1109/TDEI.2013.6518966

    Article  Google Scholar 

  • Carcedo, J., Fernández, I., Ortiz, A., Carrascal, I., Delgado, F., Ortiz, F., & Arroyo, A. (2014). Post-mortem estimation of temperature distribution on a power transformer: Physicochemical and mechanical approaches. Applied Thermal Engineering, 70, 935–943. https://doi.org/10.1016/j.applthermaleng.2014.06.003

    Article  Google Scholar 

  • CIGRE. (2009). Brochure 209. Thermal performance of transformers. CIGRE WG, A2, 24.

  • Dofan, R., & Ali, J. (2011). Study on thermal model for calculating transformer hot spot temperature

  • Fernández, I., Delgado, F., Ortiz, F., Ortiz, A., Fernández, C., Renedo, C. J., & Santisteban, A. (2016). Thermal degradation assessment of kraft paper in power transformers insulated with natural esters. Applied Thermal Engineering, 104, 129–138. https://doi.org/10.1016/j.applthermaleng.2016.05.020

    Article  Google Scholar 

  • Garelli, L., Ríos Rodriguez, G., Storti, M., Granata, D., Amadei, M., & Rossetti, M. (2017). Reduced model for the thermo-fluid dynamic analysis of a power transformer radiator working in onaf mode. Applied Thermal Engineering, 124, 855–864. https://doi.org/10.1016/j.applthermaleng.2017.06.098.

    Article  Google Scholar 

  • IEC (2011). IEC 60076-2. power transformers - part 2: Temperature rise for liquid-immersed transformers

  • IEEE (2011a). IEEE guide for loading mineral-oil-immersed transformers and step-voltage regulators. IEEE Std C5791-2011 (Revision of IEEE Std C5791-1995) pp 1–123, https://doi.org/10.1109/IEEESTD.2012.6166928

  • IEEE (2011b). IEEE standard test procedure for thermal evaluation of insulation systems for liquid-immersed distribution and power transformers. https://doi.org/10.1109/IEEESTD.2012.6143968, IEEE Std C57.100-2011

  • IEEE. (2012). IEEE standard for the design, testing, and application of liquid-immersed distribution, power, and regulating transformers using high-temperature insulation systems and operating at elevated temperatures. IEEE Std, C57154–2012, 1–49. https://doi.org/10.1109/IEEESTD.2012.6357332

  • Jahromi, A., Piercy, R., Cress, S., Service, J., Fan, W., & Service J., Fan W. (2009). An approach to power transformer asset management using health index. IEEE Electrical Insulation Magazine, 25(2), 20–34. https://doi.org/10.1109/MEI.2009.4802595

    Article  Google Scholar 

  • Kim, M. G., Cho, S. M., & Kim, J. K. (2013). Prediction and evaluation of the cooling performance of radiators used in oil-filled power transformer applications with non-direct and direct-oil-forced flow. Experimental Thermal and Fluid Science, 44, 392–397. https://doi.org/10.1016/j.expthermflusci.2012.07.011

    Article  Google Scholar 

  • Kim, Y. J., & Ha, M. Y. (2017). A study on the performance of different radiator cooling systems in large-scale electric power transformer. Journal of Mechanical Science and Technology, 31(7), 3317–3328.

    Article  Google Scholar 

  • Kulkarni, S. V., & Khaparde, S. A. (2004). Transformer engineering: Design and practice. New York: CRC Press.

    Book  Google Scholar 

  • Madenci, E., & Guven, I. (2015). The Finite Element Method and Applications in Engineering Using ANSYS\(\textregistered \). Boston: Springer International Publishing.

  • Muniz, L. A. R. (1995). Método dos volumes finitos aplicados a problemas de escoamentos bidimensionais na região de entrada de dutos cilíndricos. Master thesis, Universidade Federal do Campinas (UNICAMP), Curitiba

  • Paramane, S. B., Joshi, K., der Veken, W. V., & Sharma, A. (2014). Cfd study on thermal performance of radiators in a power transformer: Effect of blowing direction and offset of fans. IEEE Transactions on Power Delivery, 29(6), 2596–2604. https://doi.org/10.1109/TPWRD.2014.2347292

    Article  Google Scholar 

  • Perez, J. (2010). Fundamental principles of transformer thermal loading and protection. In: 2010 63rd annual conference for protective relay engineers, pp 1–14, https://doi.org/10.1109/CPRE.2010.5469518

  • Radakovic, Z. R., & Sorgic, M. S. (2010). Basics of detailed thermal-hydraulic model for thermal design of oil power transformers. IEEE Transactions on Power Delivery, 25(2), 790–802. https://doi.org/10.1109/TPWRD.2009.2033076

    Article  Google Scholar 

  • Ries, W. (2007). Transformadores: Fundamentos para projeto e cálculo. Porto Alegre: EdiPUCRS.

    Google Scholar 

  • Rogora, D., Nazzari, S., Radoman, U., & Radakovic, Z. R. (2020). Experimental research on the characteristics of radiator batteries of oil immersed power transformers. IEEE Transactions on Power Delivery, 35(2), 725–734. https://doi.org/10.1109/TPWRD.2019.2925451

    Article  Google Scholar 

  • Santisteban, A., Piquero, A., Ortiz, F., Delgado, F., & Ortiz, A. (2019). Thermal modelling of a power transformer disc type winding immersed in mineral and ester-based oils using network models and cfd. IEEE Access, 7, 174651–174661. https://doi.org/10.1109/ACCESS.2019.2957171

    Article  Google Scholar 

  • Taghikhani, M. A. & Afshar, M. R. (2021). Fans arrangement analysis in oil forced air natural cooling method of power transformer radiator. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy p 0957650920962249

  • Tenbohlen, S., Schmidt, N., Breuer, C., Khandan, S., & Lebreton, R. (2018). Investigation of thermal behavior of an oil-directed cooled transformer winding. IEEE Transactions on Power Delivery, 33(3), 1091–1098. https://doi.org/10.1109/TPWRD.2017.2711786

    Article  Google Scholar 

  • Thabet, S., Thabit, T., & Jasim, Y. (2018). Cfd analysis of a backward facing step flows. International Journal of Automotive Science and Technology, 2, 10–16. https://doi.org/10.30939/ijastech.447973.

    Article  Google Scholar 

  • Usha, K., & Usa, S. (2015). Inter disc fault location in transformer windings using sfra. IEEE Transactions on Dielectrics and Electrical Insulation, 22(6), 3567–3573. https://doi.org/10.1109/TDEI.2015.005060

    Article  Google Scholar 

  • Van der Veken, W., Paramane, S. B., Mertens, R., Chandak, V., & Coddé, J. (2016). Increased efficiency of thermal calculations via the development of a full thermohydraulic radiator model. IEEE Transactions on Power Delivery, 31(4), 1473–1481. https://doi.org/10.1109/TPWRD.2015.2501431

    Article  Google Scholar 

Download references

Acknowledgements

An early version of paper was presented at XXIII Congresso Brasileiro de Automática (CBA 2020). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brasil (CAPES/PROEX)–Finance Code 001 and in part by Companhia Paranense de Eletrificação (COPEL) through of P&D Program PD-06491-0421/2016. The authors would also to thank Federal University of Santa Maria (UFSM), UFSM Electrical Engineering Post-Graduation Program (PPGEE), UFSM Institute of Smart Grids and National Institute of Science and Technology-Distributed Generation (INCT-GD) by technical and financial support.

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nogueira, G.C., Medeiros, L.H., Oliveira, M.M. et al. Thermal Analysis of Power Transformers with Different Cooling Systems Using Computational Fluid Dynamics. J Control Autom Electr Syst 33, 359–368 (2022). https://doi.org/10.1007/s40313-021-00848-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-021-00848-0

Keywords

Navigation