Skip to main content
Log in

Application of Machine Learning Techniques and Spectrum Images of Vibration Orbits for Fault Classification of Rotating Machines

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

A comparative analysis of machine learning techniques for fault diagnosis of rotating machines based on images of vibration spectra is presented. The feature extraction of different types of faults, including unbalance, misalignment, shaft crack, rotor–stator rubbing, and hydrodynamic instability, is performed by processing spectral images of vibration orbits acquired during the machine run-up. The classifiers are trained with simulated data and tested with both simulated and experimental data. The latter are obtained from laboratory measurements performed on an rotor-disc system supported on hydrodynamic bearings. To generate the simulated data, a numerical model is developed using the finite element method. Deep learning, ensemble and traditional classification methods are evaluated. The ability of the methods to generalize the image classification is evaluated based on their performance in classifying experimental test patterns that were not used during training. The results of this research indicate that, despite considerable computational cost, the method based on convolutional neural networks presents the best performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adiletta, G., Guido, A. R., & Rossi, C. (1996). Chaotic motions of a rigid rotor in short journal bearings. Nonlinear Dynamics, 10(3), 251–269.

    Article  Google Scholar 

  • Amar, M., Gondal, I., & Wilson, C. (2015). Vibration spectrum imaging. IEEE Transactions on Industrial Electronics, 62(1), 494–502. https://doi.org/10.1109/tie.2014.2327555.

    Article  Google Scholar 

  • Ascencio, A. F. G., & de Araújo, G. S. (2010). Estruturas de dados. Pearson.

  • Atienza, R. (2018). Advanced deep learning with Keras. Packt Publishing.

  • Bin, G. F., Gao, J. J., Li, X. J., & Dhillon, B. S. (2012). Early fault diagnosis of rotating machinery based on wavelet packets-empirical mode decomposition feature extraction and neural network. Mechanical Systems and Signal Processing, 27, 696–711. https://doi.org/10.1016/j.ymssp.2011.08.002.

    Article  Google Scholar 

  • Bottou, L., Cortes, C., Denker, J. S., Drucker, H., Guyon, I., Jackel, L. D., LeCun, Y., Muller, U. A., Sackinger, E., Simard, P., & Vapnik, V. (1994). Comparison of classifier methods: A case study in handwritten digit recognition (Cat. No. 94CH3440-5). IEEE Comput. Soc. Press. https://doi.org/10.1109/icpr.1994.576879

  • Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.

    MATH  Google Scholar 

  • Chandra, N. H., & Sekhar, A. S. (2016). Fault detection in rotor bearing systems using time frequency techniques. Mechanical Systems and Signal Processing, 72–73, 105–133. https://doi.org/10.1016/j.ymssp.2015.11.013.

    Article  Google Scholar 

  • Ciabattoni, L., Ferracuti, F., Freddi, A., & Monteriu, A. (2018). Statistical spectral analysis for fault diagnosis of rotating machines. IEEE Transactions on Industrial Electronics, 65(5), 4301–4310. https://doi.org/10.1109/tie.2017.2762623.

    Article  Google Scholar 

  • Friswell, M. I., Penny, J. E. T., Garvey, S. D., & Lees, A. W. (2010). Dynamics of rotating machines. Cambridge University Press.

  • Gibbons, C. B. (1976). Coupling misalignment forces.

  • Goldman, P., & Muszynska, A. (1999). Application of full spectrum to rotating machinery diagnostics. Orbit, 20(1), 17–21.

    Google Scholar 

  • Han, Q., Zhang, Z., & Wen, B. (2008). Periodic motions of a dual-disc rotor system with rub-impact at fixed limiter. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 222(10), 1935–1946.

    Google Scholar 

  • Ho, T. K. (1998). Nearest neighbors in random subspaces. In A. Amin, D. Dori, P. Pudil, & H. Freeman (Eds.), Advances in pattern recognition (pp. 640–648). Springer.

  • Jardine, A. K. S., Lin, D., & Banjevic, D. (2006). A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing, 20(7), 1483–1510.

    Article  Google Scholar 

  • Jeong, H., Park, S., Woo, S., & Lee, S. (2016). Rotating machinery diagnostics using deep learning on orbit plot images. Procedia Manufacturing, 5, 1107–1118. https://doi.org/10.1016/j.promfg.2016.08.083.

    Article  Google Scholar 

  • Jolliffe, I. T. (2002). Principal component analysis. Springer.

  • Lalanne, M., & Ferraris, G. (2001). Rotordynamics prediction in engineering (2nd ed.). Wiley.

  • Laws, B. (1998). When you use spectrum, don’t use it halfway. Orbit, 18(2), 23–26.

  • Li, W., Zhu, Z., Jiang, F., Zhou, G., & Chen, G. (2015). Fault diagnosis of rotating machinery with a novel statistical feature extraction and evaluation method. Mechanical Systems and Signal Processing, 50–51, 414–426. https://doi.org/10.1016/j.ymssp.2014.05.034.

    Article  Google Scholar 

  • Lin, Z., Chen, Y., Zhao, X., & Wang, G. (2013). Spectral-spatial classification of hyperspectral image using autoencoders. . https://doi.org/10.1109/icics.2013.6782778

  • Liu, R., Yang, B., Zio, E., & Chen, X. (2018). Artificial intelligence for fault diagnosis of rotating machinery: A review. Mechanical Systems and Signal Processing, 108, 33–47. https://doi.org/10.1016/j.ymssp.2018.02.016.

    Article  Google Scholar 

  • Lu, C., Wang, Y., Ragulskis, M., & Cheng, Y. (2016). Fault diagnosis for rotating machinery: A method based on image processing. PLOS, ONE,11(10), e0164111. https://doi.org/10.1371/journal.pone.0164111.

    Article  Google Scholar 

  • Mayes, I. W., & Davies, W. G. R. (1984). Analysis of the response of a multi-rotor-bearing system containing a transverse crack in a rotor. Journal of Vibration Acoustics Stress and Reliability in Design, 106(1), 139. https://doi.org/10.1115/1.3269142.

    Article  Google Scholar 

  • Muszynska, A. (2005). Rotordynamics (1st ed.). CRC Press. https://doi.org/10.1201/9781420027792

  • Neal, B. (2019). On the bias-variance tradeoff: Textbooks need an update. CoRR abs/1912.08286, arXiv:1912.08286

  • Papadopoulos, C. A., & Dimarogonas, A. D. (1987). Coupled longitudinal and bending vibrations of a rotating shaft with an open crack. Journal of Sound and Vibration, 117(1), 81–93. https://doi.org/10.1016/0022-460x(87)90437-8.

    Article  Google Scholar 

  • Rodrigues, C. E. (2020). Machine learning application for fault classification in rotating machines using orbit spectra (in Portuguese). Master’s thesis, Instituto Tecnológico de Aeronáutica. São Josédos Campos, SP, Brazil.

  • Rodrigues, C. E., Nascimento, Jr. C. L., & Rade, D. A. (2020). Machine learning techniques for fault diagnosis of rotating machines using spectrum image of vibration orbits. In Anais do Congresso Brasileiro de Automática 2020. https://doi.org/10.48011/asba.v2i1.1101

  • Sekhar, A. S., & Prabhu, B. S. (1992). Crack detection and vibration characteristics of cracked shafts. Journal of Sound and Vibration, 157(2), 375–381. https://doi.org/10.1016/0022-460x(92)90690-y.

    Article  Google Scholar 

  • Sekhar, A. S., & Prabhu, B. S. (1995). Effects of coupling misalignment on vibrations of rotating machinery. Journal of Sound and Vibration, 185(4), 655–671. https://doi.org/10.1006/jsvi.1995.0407.

    Article  MATH  Google Scholar 

  • Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing & Management, 45(4), 427–437. https://doi.org/10.1016/j.ipm.2009.03.002.

    Article  Google Scholar 

  • Solomon, C., & Gibson, S. (2011). Fundamentals of digital image processing. Wiley.

  • Sorzano, C. O. S., Vargas, J., & Montano, A. P. (2014). A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877

  • Southwick, D. (1993). Using full spectrum plots. Orbit, 14(4), 12–16.

    Google Scholar 

  • Southwick, D. (1994). Using full spectrum plots part 2. Orbit, 15(2), 12–16.

    Google Scholar 

  • Vaishnavi, S. (2017). Ensemble methods and random forests. University of Illinois, https://courses.engr.illinois.edu/ece543/sp2017/projects/Vaishnavi Subramanian.pdf

  • Wei, L., & Xu, H. (2019). A review of early fault diagnosis approaches and their applications in rotating machinery. Entropy, 21(4), 409. https://doi.org/10.3390/e21040409.

    Article  Google Scholar 

Download references

Acknowledgements

An early version of paper was presented at XXIII Congresso Brasileiro de Automática (CBA 2020). The authors express their appreciation to the Petrobras company for making the experimental test bench available for this research. D. A. Rade also gratefully acknowledges the funding provided by Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP (grant #2015/20363-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clayton Eduardo Rodrigues.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, C.E., Júnior, C.L.N. & Rade, D.A. Application of Machine Learning Techniques and Spectrum Images of Vibration Orbits for Fault Classification of Rotating Machines. J Control Autom Electr Syst 33, 333–344 (2022). https://doi.org/10.1007/s40313-021-00805-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-021-00805-x

Keywords

Navigation