Skip to main content
Log in

Identification of Nonlinear Synchronous Generator Parameters Using Stochastic Fractal Search Algorithm

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This paper develops a general output error identification approach of nonlinear synchronous generator parameters. The considered method is based on a meta-heuristic optimization algorithm called stochastic fractal search (SFS). It consists of minimizing a quadratic criterion that represents the squared difference between the simulated model outputs and those obtained from the model to be identified by using the SFS algorithm. To highlight the performance of the proposed method, a deep comparison with the PSO algorithm was carried out. The obtained results proved the superiority of the proposed approach in terms of stability, robustness, estimation accuracy and convergence speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aghamolki, H. G., Miao, Z., Fan, L., Jiang, W., & Manjure, D. (2015). Identification of synchronous generator model with frequency control using unscented Kalman filter. Electric Power Systems Research, 126, 45–55. https://doi.org/10.1016/j.epsr.2015.04.016.

    Article  Google Scholar 

  • Al-Hamadi, H., & EL-Naggar, K. (2010). Measurement of synchronous machine parameters using Kalman filter based fuzzy logic estimator. Measurement, 43(10), 1327–1335. https://doi.org/10.1016/j.measurement.2010.07.012.

    Article  Google Scholar 

  • Arjona, M. A., Cisneros-Gonzalez, M., & Hernandez, C. (2011). Parameter estimation of a synchronous generator using a sine cardinal perturbation and mixed stochastic-deterministic algorithms. IEEE Transactions on Industrial Electronics, 58(2), 486–493.

    Article  Google Scholar 

  • Belqorchi, A., Karaagac, U., Mahseredjian, J., & Kamwa, I. (2019). Standstill frequency response test and validation of a large hydrogenerator. IEEE Transactions on Power Systems, 34(3), 2261–2269. https://doi.org/10.1109/tpwrs.2018.2889510.

    Article  Google Scholar 

  • Boutalis, Y., Theodoridis, D., Kottas, T., & Christodoulou, M. A.(2014). In M. J. Grimble & M. A. Johnson (Eds.), System Identification and Adaptive Control, ser. Advances in Industrial Control. Cham: Springer. https://doi.org/10.1007/978-3-319-06364-5.

  • Çelik, E. (2018). Incorporation of stochastic fractal search algorithm into efficient design of PID controller for an automatic voltage regulator system. Neural Computing and Applications, 30(6), 1991–2002. https://doi.org/10.1007/s00521-017-3335-7.

    Article  Google Scholar 

  • Cisneros-Gonzalez, M., Hernandez, C., Escarela-Perez, R., & Arjona, M. A. (2011). Determination of equivalent-circuit parameters of a synchronous generator based on the standstill DC decay test and a hybrid optimization method. Electric Power Components and Systems, 39(7), 645–659. https://doi.org/10.1080/15325008.2010.536808.

    Article  Google Scholar 

  • Dehghani, M., & Karrari, M. (2007). Nonlinear robust modeling of synchronous generators. Iranian Journal of Science and Technology, Transaction B: Engineering, 31(6), 629–640.

    MATH  Google Scholar 

  • Dehghani, M., Karrari, M., Rosehart, W., & Malik, O. P. (2010). Synchronous machine model parameters estimation by a time-domain identification method. Electrical Power and Energy Systems, 32(5), 524–529. https://doi.org/10.1016/j.ijepes.2009.07.010.

    Article  Google Scholar 

  • Dehghani, M., & Nikravesh, S. K. (2008). Nonlinear state space model identification of synchronous generators. Electric Power Systems Research, 78(5), 926–940.

    Article  Google Scholar 

  • Dubey, H. M., Pandit, M., & Panigrahi, B. (2018). An overview and comparative analysis of recent bio-inspired optimization techniques for wind integrated multi-objective power dispatch. Swarm and Evolutionary Computation, 38, 12–34. https://doi.org/10.1016/j.swevo.2017.07.012.

    Article  Google Scholar 

  • Fan, L., & Wehbe, Y. (2013). Extended Kalman filtering based real-time dynamic state and parameter estimation using PMU data. Electric Power Systems Research, 103, 168–177. https://doi.org/10.1016/j.epsr.2013.05.016.

    Article  Google Scholar 

  • Gutiérrez Rodríguez, G., Silveira e Silva, A., & Zeni, N. (2017). Identification of synchronous machine parameters from field flashing and load rejection tests with field voltage variations. Electric Power Systems Research, 143, 813–824. https://doi.org/10.1016/j.epsr.2016.08.025.

    Article  Google Scholar 

  • Hosseini, S. M. (2018). The operation and model of UPQC in voltage sag mitigation using EMTP by direct method. Emerging Science Journal, 2(3). https://doi.org/10.28991/esj-2018-01138.

  • IEEE guide for test procedures for synchronous machines part I acceptance and performance testing part II test procedures and parameter determination for dynamic analysis. IEEE Std 115-2009 (Revision of IEEE Std 115-1995), pp. 1–219, May 2010.

  • Karrari, M., & Malik, O. (2005). Identification of synchronous generators using adaptive wavelet networks. International Journal of Electrical Power & Energy Systems, 27(2), 113–120.

    Article  Google Scholar 

  • Kennedy, J., & Eberhart, R. (1995) Particle swarm optimization. https://doi.org/10.1109/icnn.1995.488968.

  • Khalaf, T. Z., Çağlar, H., Çağlar, A., & Hanoon, A. N. (2020). Particle swarm optimization based approach for estimation of costs and duration of construction projects. Civil Engineering Journal, 6(2), 384–401. https://doi.org/10.28991/cej-2020-03091478.

    Article  Google Scholar 

  • Khalilpourazari, S., Naderi, B., & Khalilpourazary, S. (2019). Multi-objective stochastic fractal search: A powerful algorithm for solving complex multi-objective optimization problems. Soft Computing, 24(4), 3037–3066. https://doi.org/10.1007/s00500-019-04080-6.

    Article  Google Scholar 

  • Khosravi, S., Zamanifar, M., and Derakhshan-Barjoei, P.(2018). Analysis of bifurcations in a wind turbine system based on DFIG. Emerging Science Journal, 2(1). https://doi.org/10.28991/esj-2018-01126.

  • Kou, P., Zhou, J., Wang, C., Xiao, H., Zhang, H., & Li, C. (2011). Parameters identification of nonlinear state space model of synchronous generator. Engineering Applications of Artificial Intelligence, 24(7), 1227–1237. https://doi.org/10.1016/j.engappai.2011.05.012.

    Article  Google Scholar 

  • Kundur, P. (1993). Power system stability and control. London: McGraw Hill.

    Google Scholar 

  • Lai, L., & Ma, J. (1996). Application of evolutionary programming to transient and subtransient parameter estimation. IEEE Transactions on Energy Conversion, 11(3), 523–530.

    Article  Google Scholar 

  • Liu, L., Liu, W., & Cartes, D. A. (2008). Particle swarm optimization-based parameter identification applied to permanent magnet synchronous motors. Engineering Applications of Artificial Intelligence, 21(7), 1092–1100.

    Article  Google Scholar 

  • Liu, W., Liu, L., Chung, I.-Y., & Cartes, D. A. (2011). Real-time particle swarm optimization based parameter identification applied to permanent magnet synchronous machine. Applied Soft Computing, 11(2), 2556–2564. https://doi.org/10.1016/j.asoc.2010.08.022.

    Article  Google Scholar 

  • Ma, J. (1995). Generator parameter identification using evolutionary programming. International Journal of Electrical Power & Energy Systems, 17(6), 417–423.

    Article  Google Scholar 

  • Meghnous, A. R., Pham, M. T., & Lin-Shi, X. (2013). Dynamic identification of a synchronous machine using an extended sliding mode observer. Mathematics and Computers in Simulation, 90, 45–59. https://doi.org/10.1016/j.matcom.2012.05.020.

    Article  MathSciNet  MATH  Google Scholar 

  • Mellal, M. A., & Zio, E. (2016). A penalty guided stochastic fractal search approach for system reliability optimization. Reliability Engineering & System Safety, 152, 213–227. https://doi.org/10.1016/j.ress.2016.03.019.

    Article  Google Scholar 

  • Mosbah, H., & El-Hawary, M. (2017). Optimization of neural network parameters by stochastic fractal search for dynamic state estimation under communication failure. Electric Power Systems Research, 147, 288–301. https://doi.org/10.1016/j.epsr.2017.03.002.

    Article  Google Scholar 

  • Mouni, E., Tnani, S., & Champenois, G. (2008). Synchronous generator modelling and parameters estimation using least squares method. Simulation Modelling Practice and Theory, 16(6), 678–689. https://doi.org/10.1016/j.simpat.2008.04.005.

    Article  Google Scholar 

  • Padiyar, K. (2008). Power system dynamics stability and control. BS Publications.

  • Salimi, H. (2015). Stochastic Fractal Search: A powerful metaheuristic algorithm. Knowledge-Based Systems, 75, 1–18. https://doi.org/10.1016/j.knosys.2014.07.025.

    Article  Google Scholar 

  • Shafer, L., Arnold, G. W., & Jacobson, D. (2013). Handbook of Electrical Power System Dynamics. IEEE Press.

  • Shariati, O., Mohd Zin, A. A., Khairuddin, A., & Aghamohammadi, M. R. (2014). Development and implementation of neural network observers to estimate synchronous generators’ dynamic parameters using on-line operating data. Electrical Engineering,96(1), 45–54. https://doi.org/10.1007/s00202-012-0274-2

  • Tyagi, T., Dubey, H. M., & Pandit, M. (2016). Multi-objective optimal dispatch solution of solar-wind-thermal system using improved stochastic fractal search algorithm. International Journal of Information Technology and Computer Science, 8(11), 61–73. https://doi.org/10.5815/ijitcs.2016.11.08.

    Article  Google Scholar 

  • Xiao, Y., Zhou, L., Wang, J., & Yang, R.(2017). Finite element computation of transient parameters of a salient-pole synchronous machine. Energies, 10(7). https://doi.org/10.3390/en10071015.

  • Zaker, B., Gharehpetian, G. B., Karrari, M., & Moaddabi, N. (2016). Simultaneous parameter identification of synchronous generator and excitation system using online measurements. IEEE Transactions on Smart Grid, 7(3), 1230–1238. https://doi.org/10.1109/tsg.2015.2478971.

    Article  Google Scholar 

  • Zhu, Q., Yuan, X., & Wang, H. (2012). An improved chaos optimization algorithm-based parameter identification of synchronous generator. Electrical Engineering, 94(3), 147–153. https://doi.org/10.1007/s00202-011-0226-2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elrachid Bendaoud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

1.1 A. SFS and PSO optimization parameters

Parameters

SFS

PSO

Population size PZ

300

300

Iteration number \(N_\mathrm{iter}\)

50

50

Maximum diffusion number MDN

2

Gaussian walks selection probability \(P_{walks}\)

0

Particle learning coefficient \(C_{1}\)

2

Population learning coefficient \(C_{1}\)

2.01

Inertia weight \(w_{\min }\)

0.4

Inertia weight \(w_{\max }\)

0.9

1.2 B. Notation

OE-SFS:

Output error method based on stochastic fractal search algorithm

SFS:

Stochastic fractal search

PSO:

Particle swarm optimization

SSFR:

Stand still frequency repose

PZ :

Population size

MDN :

Maximum diffusion number

PRBS :

Pseudo-random binary sequence

P.U:

Per unit

Std :

Standard deviation

MFV:

Mean fitness value

SDFV:

Standard deviation of fitness value

AWGN

Additive white Gaussian noise

\(N_\mathrm{iter}\):

Iteration number

\(\theta \), \(\hat{\theta }\)

Actual and identified parameters vector

\(T_\mathrm{s}\)

Sampling times

\(T_\mathrm{f}\)

Sampling procedure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bendaoud, E., Radjeai, H. & Boutalbi, O. Identification of Nonlinear Synchronous Generator Parameters Using Stochastic Fractal Search Algorithm. J Control Autom Electr Syst 32, 1639–1651 (2021). https://doi.org/10.1007/s40313-021-00804-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-021-00804-y

Keywords

Navigation