Skip to main content
Log in

Robust Controller of Buck Converter Feeding Constant Power Load

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

In this paper, we propose a robust PID controller based on Kharitonov theorem to overcome stability issues in DC power systems. These issues are caused by increasing number of constant power loads (CPLs), uncertainty in the input voltage and disturbances which affect the system performance. We designed this controller for achieving the desired tracking performance and closed-loop stability of DC buck converter that feeds constant impedance load and CPL. The drawback of small signal stability methods was handled as the system is linearized around all the possible operating points which is the main contribution of this paper. To assure stability over the operating range, Hermit Biehler theorem is used to find the stabilization sets of the PID controller. Stability analysis reveals that the proposed method is robust for uncertainties. The simulation results show promising performance of the proposed algorithm of the PID controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

L :

Inductance

\( r_{L} \) :

Inductor resistance

\( i_{L} \) :

Inductor current

C :

Capacitance

R :

Resistance of the resistive load

\( v_{\text{o}} \) :

Output voltage

\( v_{\text{s}} \) :

Supply voltage

\( u \in \left( { 0 , 1} \right) \) :

Control signal

P :

Power of the CPL

\( V_{\text{ref}} \) :

Desired reference voltage

\( V_{\text{s}} ,U,V_{\text{o}} \,{\text{and}}\,I_{L} \) :

Average values of \( v_{\text{s}} ,u,v_{\text{o}} \). and \( i_{L} \), respectively

\( \tilde{v}_{\text{s}} , \tilde{u}, \tilde{v}_{\text{o}} \,{\text{and}}\, \tilde{i}_{L} \) :

Small signal disturbances of \( v_{\text{s}} ,u,v_{\text{o}} \). and \( i_{L} \), respectively

\( \delta \left( s \right), \delta \left( {j\omega } \right) \) :

Characteristic polynomial in frequency domain

s :

Normalized characteristic polynomial

\( \sigma_{i} \left( \delta \right) \) :

Imaginary signature of the characteristic polynomial

\( \delta_{\text{e}} \left( {s^{2} } \right),\delta_{\text{o}} \left( {s^{2} } \right) \) :

Even and odd components of \( \delta \left( s \right) \)

\( N\left( s \right), \, D\left( s \right) \) :

Nominator and denominator of plant transfer function

\( p\left( \omega \right),q\left( \omega \right) \) :

Real and imaginary components of \( \delta \left( {j\omega } \right) \)

\( p_{f} \left( \omega \right),q_{f} \left( \omega \right) \) :

Real and imaginary components of \( \delta_{f} \left( {j\omega } \right) \)

\( \theta (\omega ) \) :

Phase angle of \( \delta_{f} \left( {j\omega } \right) \)

\( \Delta_{0}^{\infty } \theta \) :

Net change in the phase angle \( \theta \left( \omega \right) \)

\( l(\delta ),r(\delta ) \) :

Number of roots of \( \delta_{f} \left( {j\omega } \right) \) in left and right half plane, respectively

I :

String contains all possible signs of \( p_{f} \left( \omega \right) \)

\( \gamma \left( I \right) \) :

Imaginary signature related to string I

\( K_{\text{p}} ,K_{\text{i}} ,K_{\text{d}} \) :

Proportional, integral and derivative gains of PID controller

\( n_{c} \left( s \right),d_{c} \left( s \right) \) :

Nominator and denominator of PID Transfer function

\( \underline{{b_{0} }} ,\overline{{b_{0} }} ,\underline{{a_{1} }} ,\overline{{a_{1} }} ,\underline{{a_{0} }} ,\overline{{a_{0} }} \) :

Lower and upper bounds of b and a, respectively

K(s):

Kharitonov polynomial

\( NS\left( s \right) \) :

Kharitonov segments of N(s)

References

  • Ahmadi, R. (2013). Dynamic modeling, stability analysis, and controller design. Missouri University of Science and Technology, Doctoral dissertation 2013.

  • Dong, M., Liu, Z., Wang, S., Zhu, Q., Su, M., & Li, Y. (2017). Design criteria for parallel connected-buck converters in DC microgrid loaded by CPLs. In Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia), Kaohsiung, Taiwan.

  • Dragičević, T., Xiaonan, L., & Vasquez, J. C. (2016). DC microgrids—Part I: A review of control strategies and stabilization techniques. IEEE Transactions on Power Electronics, 31(7), 4876–4891.

    Google Scholar 

  • Emadi, A., & Ehsani, M. (2000). Negative impedance stabilizing controls for PWM DC–DC converters using feedback linearization techniques. In Collection of Technical Papers. 35th Intersociety Energy Conversion Engineering Conference and Exhibit (IECEC), Las Vegas, NV, USA, USA.

  • Emadi, A., Khaligh, A., Rivetta, C. H., & Williamson, G. A. (2006). Constant power loads and negative impedance instability in automotive systems: definition, modeling, stability, and control of power electronic converters and motor drives. IEEE Transactions on Vehicular Technology, 55(4), 1112–1125.

    Article  Google Scholar 

  • Gavagsaz-Ghoachani, R., Martin, J. P., Pierfederici, S., Nahid-Mobarakeh, B., Molinas, M., & Zadeh, M. K. (2015). Discrete-time modelling, stability analysis, and active stabilization of DC distribution systems with multiple constant power loads. In IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, USA.

  • Grino, R., & Rafiezadeh, R. (2019). A relay controller with parallel feed-forward compensation for a buck converter feeding constant power loads. In 2019 24th IEEE international conference on Emerging Technologies and Factory Automation (ETFA), Spain.

  • Herrera, L., Zhang, W., & Wang, J. (2017). Stability analysis and controller design of DC microgrids with constant power loads. IEEE Transactions on Smart Grid, 8(2), 881–888.

    Google Scholar 

  • Ho, M., Bhattacharyya, S. P., & Datta, A. (2000). Structure and synthesis of PID controllers. London: Springer.

    MATH  Google Scholar 

  • Hu, J., Zhao, Z., & Shao, X. (2019). Stabilisation strategy based on feedback linearisation for DC microgrid with multi-converter. The Journal of Engineering, 2019(16), 1802–1806.

    Google Scholar 

  • Kwasinski, A., & Krein, P. T. (2007). Passivity-based control of buck converters with constant-power loads. In IEEE Power Electronics Specialists Conference, Orlando, FL, USA.

  • Lindahl, P. A., Banerjee, A., Leeb, S. B., & Gutierrez, M. (2019). An energy buffer for controllable input impedance of constant power loads. IEEE Transactions on Industry Applications, 55(3), 2910–2921.

    Article  Google Scholar 

  • Lonkar, M., & Ponnaluri, S. (2015). An overview of DC microgrid operation and control. In IREC2015 The Sixth International Renewable Energy Congress, pp. 1–6.

  • Lu, X., Vasquez, J. C., & Guerrero-Dragičević, J. M. (2016). DC microgrids—Part II: A review of power architectures, applications, and standardization issues. IEEE Transactions on Power Electronics, 31(5), 3528–3549.

    Article  Google Scholar 

  • Nahid-Mobarakeh, B., Pierfederici, S., Meibody-Tabar, F., & Awan, A. B. (2009). Nonlinear stabilization of a DC-bus supplying a constant power load, Houston, TX, USA, pp. 1–8.

  • Nahid-Mobarakeh, B., Pierfederici, S., & Zahedi, B. (2016). A robust active stabilization technique for DC microgrids. In Power Electronics and Motion Control Conference (PEMC), Varna, Bulgaria.

  • Onwuchekwa, C. N., & Kwasinski, A. (2010). Analysis of boundary control for buck converters with instantaneous constant-power loads. IEEE Transactions on Power Electronics, 25(8), 2018–2032.

    Article  Google Scholar 

  • Perez, R., & Hossain, E. (2017). Development of Lyapunov redesign controller for microgrids with constant power loads. Renewable Energy Focus, Science Direct, 19–20, 49–62.

    Google Scholar 

  • Rahimi, A. M., & Emadi, A. (2009). Active damping in DC/DC power electronic converters: A novel method to overcome the problems of constant power loads. IEEE Transactions on Industrial Electronics, 56(5), 1428–1439.

    Article  Google Scholar 

  • Rivetta, C. H., Emadi, A., Williamson, G. A., Jayabalan, R., & Fahimi, B. (2006). Analysis and control of a buck DC-DC converter operating with constant power load in sea and undersea vehicles. IEEE Transactions on Industry Applications, 42(2), 559–572.

    Article  Google Scholar 

  • Rivetta, C., & Williamson, G. A. (2003). Large-signal analysis of a DC–DC buck power converter operating with constant power load. In The 29th annual conference of the IEEE Industrial Electronics Society, IECON’03 (Vol. 1, pp. 732–737), Roanoke, VA, USA.

  • Srinivasan, M. (2017). Hierarchical control of DC microgrids with constant power loads. University of Texas, Doctoral dissertation 2017.

  • Tahim, A. P. N. (2011). Control of interconnected power electronic converters in DC distribution systems. In Power Electronics Conference (COBEP), Brazilian IEEE, pp. 269–274.

  • Vafamand, N., Khooban, M. H., Dragičević, T., Blaabjerg, F., & Mardani, M. M. (2019). Design of quadratic D-stable fuzzy controller for DC microgrids with multiple CPLs. IEEE Transactions on Industrial Electronics, 66(6), 4805–4812.

    Article  Google Scholar 

  • Vu, T. (2016). Distributed robust adaptive droop control for DC microgrids. Florida State University, Florida, Doctoral dissertation 2016.

  • Williamson, G. A., Emadi, A., & Rahimi, A. M. (2010). Loop-cancellation technique a novel nonlinear feedback to overcome the destabilizing effect of constant-power loads. IEEE Transactions on Vehicular Technology, 59(2), 650–661.

    Article  Google Scholar 

  • Williamson, G. A., & Rivetta, C. (2004). Global behaviour analysis of a DCDC boost power converter operating with constant power load (Vol. 5, p. 956), Vancouver, BC, Canada.

  • Ye, Q. (2017). Small signal instability assessment and mitigation in power electronics based power systems. Department of Electrical and Computer Engineering, Department of Electrical and Computer Engineering, Florida State University, Doctoral dissertation 2017.

  • Zhang, W., Rizzoni, G., & Liu, J. (2018). Robust stability analysis of DC microgrids with constant power loads. IEEE Transactions on Power Systems, 33(1), 748–753.

    Google Scholar 

  • Zhao, Y., Qiao, W., & Ha, D. (2014). A sliding-mode duty-ratio controller for DC/DC buck converters with constant power loads. IEEE Transactions on Industry Applications, 50(2), 1448–1458.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud S. Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M.S., Soliman, M., Hussein, A.M. et al. Robust Controller of Buck Converter Feeding Constant Power Load. J Control Autom Electr Syst 32, 153–164 (2021). https://doi.org/10.1007/s40313-020-00660-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-020-00660-2

Keywords

Navigation