Skip to main content
Log in

Combined SHE-LLCL Design for a Real Case Photovoltaic Power Station

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

The purpose of this study is to improve control performances of a real case photovoltaic (PV) power station. By considering the cable’s inductance, the LCL filter becomes an LLCL filter with a resonant behavior. To avoid this resonance from contaminating the system and to ensure that the studied case could be realized in the worldwide, a control design is highly required. This is achieved through two PWM strategies: the selective harmonic elimination (SHE) and the selective harmonic modulation (SHM). A brief comparison is highlighted in this paper. The obtained results confirm that SHE strategy presents really a harmful disadvantage compared to SHM (Franquelo et al. in IEEE Transactions on Industrial Electronics 54(6):3022–3029, 2007, Napoles et al. in IEEE Transactions on Industrial Electronics 57(7):2315–2323, 2010), which could impact the current harmonics rejected on the grid and breaks grid codes. An attention has to be paid to the unwanted effect of the SHE strategy as well as the LLCL poor quality attenuation. An efficient combined SHE-LLCL strategy is proposed to improve the performance of a real case grid-connected PV inverter thanks to the flexibility provided by the LLCL filter and the SHE strategy’s simplicity. Obtained results show better performances over traditional researches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

SHE:

Selective harmonic elimination

SHM:

Selective harmonic modulation

PWM:

Pulse width modulation

PV:

Photovoltaic

SQP:

Sequential quadratic programming

THD:

Total harmonic distortion

\(R_{2Y1}\) :

Secondary winding resistance (\(\varOmega \))

\(L_{2Y1}\) :

Secondary inductance (H)

\(R_{3Y1}\) :

Tertiary resistance (\(\varOmega \))

\(L_{3Y1}\) :

Tertiary inductance (H)

\(C_{3Y1}\) :

Tertiary capacitance (H)

\(R_{1Y1}\) :

Primary winding resistance (\(\varOmega \))

\(L_{1Y1}\) :

Primary inductance (H)

\(R_{\mu 1}\) :

Magnetic resistance (\(\varOmega \))

\(L_{\mu 1}\) :

Magnetic inductance (H)

\(R_{\mathrm{grid}1}\) :

Equivalent grid resistance (\(\varOmega \))

\(L_{\mathrm{grid}1}\) :

Equivalent grid inductance (H)

\(i_{h_{n}}\) :

Amplitude of the n-current harmonic

\(v_{h_{n}}\) :

Amplitude of the n-voltage harmonic

\(H_{\mathrm{LCL}}\) :

Frequency response of the LCL filter

\(H_{\mathrm{LLCL}}\) :

Frequency response of the LLCL filter

References

  • Arrêté du 23 avril 2008, Arrêté du 23 avril 2008 relatif aux prescriptions techniques de conception et de fonctionnement pour le raccordement à un réseau public de distribution d’électricité en basse tension ou en moyenne tension d’une installation de production d’énergie électrique (in French), March 2011.

  • Arulkumar, K., Vijayakumar, D., & Palanisamy, K. (2018). Design of optimal LLCL filter with an improved control strategy for single phase grid connected pv inverter. International Journal of Power Electronics and Drive Systems (IJPEDS), 9(1), 114. https://doi.org/10.11591/ijpeds.v9.i1.pp114-125.

    Article  Google Scholar 

  • Changizian, M., Ali, Z., & Araz, S. (2017). Three-phase multistage system (DC-AC-DC-AC) for connecting solar cells to the grid. Italian Journal of Science & Engineering, 1(3), 135–144. https://doi.org/10.28991/ijse-01116.

    Article  Google Scholar 

  • Dupont, F. H., & Romani, J. (2017). Closed-loop control for a single-phase cascaded multilevel inverters operating with SHE-PWM. In 2017 Brazilian Power Electronics Conference (COBEP). https://doi.org/10.1109/cobep.2017.8257435.

  • Engineering recommendation G5/4, Recommendation Planning levels For Harmonic Voltage Distortion and the connection of non-linear-Equipement to transmission Systems and Distribution networks in the united Kingdom, February 2001.

  • Franquelo, L. G., Napoles, J., Portillo Guisado, R. Ó. C., Leon, J. É. I., & Aguirre, M. A. (2007). A flexible selective harmonic mitigation technique to meet grid codes in three-level PWM converters. IEEE Transactions on Industrial Electronics, 54(6), 3022–3029. https://doi.org/10.1109/tie.2007.907045.

    Article  Google Scholar 

  • Gonzalez, F. J., Laguna, M., Marquez, A., Leon, J. I., Portillo, R. & Franquelo, L. G. Selective harmonic mitigation technique based on the exchange market algorithm for high-power applications. In IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics Society (October 2017). https://doi.org/10.1109/iecon.2017.8217130.

  • Hosseini, S. M. (2018). The operation and model of UPQC in voltage sag mitigation using EMTP by direct method. Emerging Science Journal,. https://doi.org/10.28991/esj-2018-01138.

    Article  Google Scholar 

  • IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems,IEEE Std 519-2014 (Revision of IEEE Std 519-1992), pp.1–29, Jun.11,2014. https://doi.org/10.1109/ieeestd.2014.6826459.

  • Ke, Y.-K., Chia-Ching, L., & Yi-Han, L. Energy Saving in Smart Grid. 2019 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia) (2019). https://doi.org/10.1109/wipdaasia.2019.8760321.

  • Khalaf, T. Z., Hakan Çağlar, A., & Ammar, N. H. (2020). Particle swarm optimization based approach for estimation of costs and duration of construction projects. Civil Engineering Journal, 6(2), 384–401. https://doi.org/10.28991/cej-2020-03091478.

    Article  Google Scholar 

  • Lin, M.-H., Tsai, J.-F., & Chian-Son, Y. (2012). A review of deterministic optimization methods in engineering and management. Mathematical Problems in Engineering, 2012, 1–15. https://doi.org/10.1155/2012/756023.

    Article  MathSciNet  MATH  Google Scholar 

  • Napoles, J., Leon, J. I., Portillo, R., Franquelo, L. G., & Aguirre, M. A. (2010). Selective harmonic mitigation technique for high-power converters. IEEE Transactions on Industrial Electronics, 57(7), 2315–2323. https://doi.org/10.1109/tie.2009.2026759.

    Article  Google Scholar 

  • Patel, H. S., & Richard G. H. (1973) Generalized techniques of harmonic elimination and voltage control in thyristor inverters: Part I–harmonic elimination. IEEE Transactions on Industry Applications IA-9, no. 3 (May 1973): 310–317. https://doi.org/10.1109/tia.1973.349908.

  • Patel, H. S., & Richard G. H. (1974). Generalized techniques of harmonic elimination and voltage control in thyristor inverters: Part II—voltage control techniques. IEEE Transactions on Industry Applications IA-10, no. 5 : 666–673. https://doi.org/10.1109/tia.1974.349239.

  • Sanatkar-Chayjani, M., & Monfared, M. (2016). Design of LCL and LLCL filters for single-phase grid connected converters. IET Power Electronics, 9(9), 1971–1978. https://doi.org/10.1049/iet-pel.2015.0922.

    Article  Google Scholar 

  • Sharifzadeh, M., Vahedi, H., Portillo, R., Garcia Franquelo, L., & Al-Haddad, K. (2019). Selective harmonic mitigation based self-elimination of triplen harmonics for single-phase five-level inverters. IEEE Transactions on Power Electronics, 34(1), 86–96. https://doi.org/10.1109/tpel.2018.2812186.

    Article  Google Scholar 

  • Sivakumar, L. P., Sivakumar, S., Prabha, A. & Rajapandiyan, A. (2019). Implementation of particle swarm optimization for maximum power absorption from photovoltaic system using energy extraction circuit. In 2019 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS). https://doi.org/10.1109/incos45849.2019.8951378.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rawia Chakroun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakroun, R., Ayed, R.B. & Derbel, N. Combined SHE-LLCL Design for a Real Case Photovoltaic Power Station. J Control Autom Electr Syst 31, 1558–1566 (2020). https://doi.org/10.1007/s40313-020-00634-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-020-00634-4

Keywords

Navigation