Skip to main content
Log in

Adaptive Nonlinear Control of Three-Phase Series Active Power Filters with Magnetic Saturation

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

The problem of controlling three-phase series active power filters (series APF) is addressed in the presence of nonlinear loads. In previous works, the control design for series APF is generally based on standard models that assume the involved magnetic coil to be linear. In reality, the magnetic characteristics of these components are nonlinear. In this paper, a new model for series APF load system, taking into account for the nonlinearity of coil characteristics, is developed. Based on the new model, a nonlinear adaptive controller is developed, using the backstepping design. The control objectives is twofold: (i) compensating for the harmonic and disturbed voltages components at the point of common coupling, this objective is referred to network voltage quality; and (ii) regulating the inverter DC capacitor voltage. Moreover, the controller is made adaptive for compensating the uncertainty on the switching loss power. The performances of the proposed adaptive controller are formally analyzed using tools from the Lyapunov stability and average theory. The supremacy of the proposed controller with respect to standard control solution is illustrated through simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Aien, M., Hajebrahimi, A., & Fotuhi-Firuzabad, M. (2016). A comprehensive review on uncertainty modeling techniques in power system studies. Renewable and Sustainable Energy Reviews,57, 1077–1089.

    Article  Google Scholar 

  • Akagi, H., Kanazawa, Y., & Nabae, A. (1984). Instantaneous reactive power compensators comprising switching devices without energy storage components. IEEE Transactions on Industry Applications,20, 625–630.

    Article  Google Scholar 

  • Antunes, H. M. A., Silva, S. M., Brandao, D. I., Machado, A. A. P., & de Jesus Cardoso Filho, B. (2018). Harmonic compensation using a series hybrid filter in a centralized AC microgrid. Journal of Control, Automation and Electrical Systems,29(2), 219–229.

    Article  Google Scholar 

  • Asadi, M., & Jalilian, A. (2015). Control of hybrid active power filter based on switching function coefficients. Electric Power Components and Systems,43(13), 1498–1508.

    Article  Google Scholar 

  • Chihab, A. A., Ouadi, H., Giri, F., El Majdoub, K. (2014) Adaptive nonlinear control of series APFs: Harmonics grid voltage compensation and inverter DC voltage regulation. In IEEE international conference on control applications (CCA), pp. 885–890.

  • Duesterhoeft, W. C., Schulz, M. W., & Clarke, E. (1951). Determination of instantaneous currents and voltages by means of alpha, beta, and zero components. Transactions of the American Institute of Electrical Engineers,70(2), 1248–1255.

    Article  Google Scholar 

  • González, M., Cárdenas, V., & Espinosa, G. (2014). Advantages of the passivity based control in dynamic voltage restorers for power quality improvement. Simulation Modeling Practice and Theory,47, 221–235.

    Article  Google Scholar 

  • Herrera, R. S., & Salmerón, P. (2012). Harmonic disturbance identification in electrical systems with capacitor banks. Electric Power Systems Research,82, 18–26.

    Article  Google Scholar 

  • IEEE. (2014). Recommended practices and requirements for harmonic control in electrical power systems, 519–2014, (Revision of IEEE Std 519-1992), pp. 1–29.

  • Kanaan, H. Y., Al-Haddad, K., Assi, A. A., & Sleiman, J. B. (2003). Averaged modeling and control of a three-phase series active power filter for voltage harmonic compensation. Industrial Electronics Society (IEEE),1, 255–260.

    Google Scholar 

  • Kashif, M., Hossain, M. J., Zhuo, F., & Gautam, S. (2018). Design and implementation of a three-level active power filter for harmonic and reactive power compensation. Electric Power Systems Research,165, 144–156.

    Article  Google Scholar 

  • Khalil, H. (2003). Nonlinear systems analysis. NJ: Prentice Hall Inc.

    Google Scholar 

  • Krein, P. T., Bentsman, J., Bass, R. M., & Lesieutre, B. (1990). On the use of averaging for analysis of power electronic system. IEEE Transactions on Power Electronics,5, 182–190.

    Article  Google Scholar 

  • Leonhard, W. (1996). Control of electrical drives (2nd ed.). NY: Springer. https://doi.org/10.1007/978-3-642-97646-9.

    Book  Google Scholar 

  • Liu, Q., Li, Y., Hu, S., & Luo, L. (2019). A controllable inductive power filtering system: Modeling, analysis and control design. International Journal of Electrical Power & Energy Systems,105, 717–728.

    Article  Google Scholar 

  • Mahel, O. P., Shaik, A. G., & Gupta, N. (2015). A review of detection and classification of power quality events. Renewable and Sustainable Energy Reviews,41, 495–505.

    Article  Google Scholar 

  • Mirzaeva, G., & Goodwin, G. C. (2015). Harmonic suppression and delay compensation for inverters via variable horizon nonlinear model predictive control. International Journal of Control,88(7), 1400–1409.

    Article  Google Scholar 

  • Nagarajan, C., & Madheswaran, M. (2011). Stability analysis of series parallel resonant converter with fuzzy logic controller using state space techniques. Electric Power Components and Systems,39(8), 780–793.

    Article  Google Scholar 

  • Narongrit, T., Areerak, K., & Areerak, K. (2015). A new design approach of fuzzy controller for shunt active power filter. Electric Power Components and Systems,43(6), 685–694.

    Article  Google Scholar 

  • Obulesu, Y. P., Venkateswara, Reddy M., & Kusumalatha, Y. (2014). A % THD analysis of industrial power distribution systems with active power filter-case studies. Electrical Power and Energy Systems,60, 107–120.

    Article  Google Scholar 

  • Ouadi, H., Ait, Chihab A., & Giri, F. (2015). Adaptive nonlinear control of three-phase shunt active power filters with magnetic saturation. Electrical Power and Energy Systems,69, 104–115.

    Article  Google Scholar 

  • Ouadi, H., Giri, F., Elfadili, A., & Dugard, L. (2010). Induction machine speed control with flux optimization. Control Engineering Practice,18, 55–66.

    Article  Google Scholar 

  • Ouchen, S., Gaubert, J.-P., Steinhart, H., & Betka, A. (2019). Energy quality improvement of three-phase shunt active power filter under different voltage conditions based on predictive direct power control with disturbance rejection principle. Mathematics and Computers in Simulation,158, 506–519.

    Article  MathSciNet  Google Scholar 

  • Peng, F. Z. (2001). Harmonic sources and filtering approaches. IEEE Industry Applications Magazine,7(4), 18–25.

    Article  Google Scholar 

  • Rakhee, P., Prafulla, C. P., & Bidyadhar, S. (2014). A robust extended complex Kalman Filter and sliding-mode control based shunt active power filter. Electric Power Components and Systems,42(5), 520–532.

    Article  Google Scholar 

  • Salmerón, P., & Litrán, S. P. (2010). Improvement of the electric power quality using series active and shunt passive filters. IEEE Transactions on Power Delivery,25, 1058–1067.

    Article  Google Scholar 

  • Shixi, H., & Juntao, F. (2015). Adaptive fuzzy backstepping control of three-phase active power filter. Control Engineering Practice,45, 12–21.

    Article  Google Scholar 

  • Subrahmanyam, V., Macfadyen, W. K., Simpson, R. R. S., Slater, R. D., & Wood, W. S. (1974). Representation of magnetization curves by exponential series. Proceedings of the Institution of Electrical Engineers,121(7), 707–708.

    Article  Google Scholar 

  • Sushree, D. S., & Pravat, K. R. (2016). Harmonic current and voltage compensation using HSAPF based on hybrid control approach for synchronous reference frame method. International Journal of Electrical Power & Energy Systems,75, 83–90.

    Article  Google Scholar 

  • Taheri, B., Sedaghat, M., Bagherpour, M. A., & Farhadi, P. (2019). A new controller for DC–DC converters based on sliding mode control techniques. Journal of Control Automation and Electrical Systems,30(1), 63–74.

    Article  Google Scholar 

  • Tang, X., Tsang, K. M., & Chan, W. L. (2011). Active power filter using nonlinear repetitive controller. International Journal of Control, Automation and Systems,9(1), 132–138.

    Article  Google Scholar 

  • Teixeira, N. F., Pinto, J. G. O., Sepúlveda Freitas, M. J., & Afonso, J. L. (2015). New control algorithm for single-phase series active power filter. Electric Power Components and Systems,43(15), 1752–1760.

    Article  Google Scholar 

  • Venkatraman, K., Moorthi, S., & Selvan, M. P. (2017). Modelling and control of transformer-less universal power quality conditioner (TUnPQC): An effective solution for power quality enhancement in distribution system. Journal of Control, Automation and Electrical Systems,28(1), 123–134.

    Article  Google Scholar 

  • Wen-liang, C., & Shing-gwo, W. (2010). Analysis and optimal control of PWM systems. International Journal of Control,45(5), 1565–1574.

    MATH  Google Scholar 

  • Yogesh, K. C., Sanjay, K. J., & Bhim, S. (2013). Operating performance of static series compensated three-phase self-excited induction generator. Electrical Power and Energy Systems,49, 137–148.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Aitchihab.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouadi, H., Aitchihab, A. & Giri, F. Adaptive Nonlinear Control of Three-Phase Series Active Power Filters with Magnetic Saturation. J Control Autom Electr Syst 31, 726–742 (2020). https://doi.org/10.1007/s40313-020-00581-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-020-00581-0

Keywords

Navigation