Skip to main content

Advertisement

Log in

A Modified perturb-and-observe-based Maximum Power Point Tracking Technique for Photovoltaic Energy Conversion Systems

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

One of the most widely used maximum power point tracking (MPPT) methods in photovoltaic systems (PVSs) is perturb and observe (P&O) method due to its simplicity, ease of use, and acceptable performance. However, it has two important drawbacks: (1) the undesirable fluctuations around the maximum power point (MPP) under steady-state environmental conditions; (2) the tracking deviation under sudden change as well as gradual variation in the irradiation conditions. This paper proposes a simple modified P&O-based MPPT method for PVSs in which the perturbation size is adaptively determined in such a way that the convergence speed to the MPP is increased and the undesirable oscillations around the MPP are decreased. In addition, the direction of the perturbations is determined on the basis of incremental conductance MPPT method so that the proposed algorithm is capable to extract the maximum power from the PVS, even under sudden or gradual variation in solar irradiation. The validity and effectiveness of the proposed algorithm are investigated using time-domain simulations in the MATLAB® software environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abdalla, I., Zhang, L., & Corda, J. (2011). August. Voltage-hold perturbation & observation maximum power point tracking algorithm (VH-P&O MPPT) for improved tracking over the transient atmospheric changes. In: Proceedings of the 2011-14th European conference power electronics and applications (EPE 2011) (pp. 1–10).

  • Abdelsalam, A. K., Massoud, A. M., Ahmed, S., & Enjeti, P. N. (2011). High-performance adaptive perturb and observe MPPT technique for photovoltaic-based microgrids. IEEE Transactions on Power Electronics, 26(4), 1010–1021.

    Article  Google Scholar 

  • Abdel-Salam, M., El-Mohandes, M. T., & Goda, M. (2018). An improved perturb-and-observe based MPPT method for PV systems under varying irradiation levels. Solar Energy, 171, 547–561.

    Article  Google Scholar 

  • Ahmed, J., & Salam, Z. (2015). An improved perturb and observe (P&O) maximum power point tracking (MPPT) algorithm for higher efficiency. Applied Energy, 150, 97–108.

    Article  Google Scholar 

  • Ahmed, J., & Salam, Z. (2018). An enhanced adaptive P&O MPPT for fast and efficient tracking under varying environmental conditions. IEEE Transactions on Sustainable Energy, 9, 1487.

    Article  Google Scholar 

  • Ali, A. I., Sayed, M. A., & Mohamed, E. E. (2018). Modified efficient perturb and observe maximum power point tracking technique for grid-tied PV system. International Journal of Electrical Power & Energy Systems, 99, 192–202.

    Article  Google Scholar 

  • Al-Majidi, S. D., Abbod, M. F., & Al-Raweshidy, H. S. (2018). A novel maximum power point tracking technique based on fuzzy logic for photovoltaic systems. International Journal of Hydrogen Energy, 43(31), 14158–14171.

    Article  Google Scholar 

  • Bahrami, M., Gavagsaz-Ghoachani, R., Zandi, M., Phattanasak, M., Maranzanaa, G., Nahid-Mobarakeh, B., et al. (2019). Hybrid maximum power point tracking algorithm with improved dynamic performance. Renewable energy, 130, 982–991.

    Article  Google Scholar 

  • Belkaid, A., Colak, I., & Isik, O. (2016). Photovoltaic maximum power point tracking under fast varying of solar radiation. Applied energy, 179, 523–530.

    Article  Google Scholar 

  • Bennett, T., Zilouchian, A., & Messenger, R. (2013). A proposed maximum power point tracking algorithm based on a new testing standard. Solar Energy, 89, 23–41.

    Article  Google Scholar 

  • Bianconi, E., Calvente, J., Giral, R., Mamarelis, E., Petrone, G., Ramos-Paja, C. A., et al. (2013). Perturb and observe MPPT algorithm with a current controller based on the sliding mode. International Journal of Electrical Power & Energy Systems, 44(1), 346–356.

    Article  Google Scholar 

  • Danandeh, M. A. (2018). Comparative and comprehensive review of maximum power point tracking methods for PV cells. Renewable and Sustainable Energy Reviews, 82, 2743–2767.

    Article  Google Scholar 

  • Devi, V. K., Premkumar, K., Beevi, A. B., & Ramaiyer, S. (2017). A modified Perturb & Observe MPPT technique to tackle steady state and rapidly varying atmospheric conditions. Solar Energy, 157, 419–426.

    Article  Google Scholar 

  • Doncker, De, Rik, W., & Ordonez, Martin. (2017). Guest editorial special issue on distributed generation. IEEE Journal of Emerging and Selected Topics in Power Electronics, 5(2), 597–599.

    Article  Google Scholar 

  • Faraji, R., Rouholamini, A., Naji, H. R., Fadaeinedjad, R., & Chavoshian, M. R. (2014). FPGA-based real time incremental conductance maximum power point tracking controller for photovoltaic systems. IET Power Electronics, 7(5), 1294–1304.

    Article  Google Scholar 

  • Ghassami, A. A., Sadeghzadeh, S. M., & Soleimani, A. (2013). A high performance maximum power point tracker for PV systems. International Journal of Electrical Power & Energy Systems, 53, 237–243.

    Article  Google Scholar 

  • Hong, Y., Pham, S. N., Yoo, T., Chae, K., Baek, K. H., & Kim, Y. S. (2015). Efficient maximum power point tracking for a distributed PV system under rapidly changing environmental conditions. IEEE Transactions on Power Electronics, 30(8), 4209–4218.

    Article  Google Scholar 

  • Jordehi, A. R. (2016). Maximum power point tracking in photovoltaic (PV) systems: A review of different approaches. Renewable and Sustainable Energy Reviews, 65, 1127–1138.

    Article  Google Scholar 

  • Karami, N., Moubayed, N., & Outbib, R. (2017). General review and classification of different MPPT Techniques. Renewable and Sustainable Energy Reviews, 68, 1–18.

    Article  Google Scholar 

  • Kchaou, A., Naamane, A., Koubaa, Y., & Msirdi, N. (2017). Second order sliding mode-based MPPT control for photovoltaic applications. Solar Energy, 155, 758–769.

    Article  Google Scholar 

  • Khan, M. J., & Mathew, L. (2018). Comparative study of optimization techniques for renewable energy system. Archives of Computational Methods in Engineering. https://doi.org/10.1007/s11831-018-09306-8.

  • Khatib, T.T., Mohamed, A., Amim, N., & Sopian, K. (2010). An improved indirect maximum power point tracking method for standalone photovoltaic systems. In Proceedings of the 9th WSEAS international conference on applications of electrical engineering, Selangor, Malaysia (pp. 56–62).

  • Killi, M., & Samanta, S. (2015). Modified perturb and observe MPPT algorithm for drift avoidance in photovoltaic systems. IEEE Transactions on Industrial Electronics, 62(9), 5549–5559.

    Article  Google Scholar 

  • Kota, V. R., & Bhukya, M. N. (2017). A novel linear tangents based P&O scheme for MPPT of a PV system. Renewable and Sustainable Energy Reviews, 71, 257–267.

    Article  Google Scholar 

  • Loukriz, A., Haddadi, M., & Messalti, S. (2016). Simulation and experimental design of a new advanced variable step size Incremental Conductance MPPT algorithm for PV systems. ISA Transactions, 62, 30–38.

    Article  Google Scholar 

  • Mohammed, S. S., Devaraj, D., & Ahamed, T. I. (2016). A novel hybrid maximum power point tracking technique using perturb & observe algorithm and learning automata for solar PV system. Energy, 112, 1096–1106.

    Article  Google Scholar 

  • Peng, L., Zheng, S., Chai, X., & Li, L. (2018). A novel tangent error maximum power point tracking algorithm for photovoltaic system under fast multi-changing solar irradiances. Applied Energy, 210, 303–316.

    Article  Google Scholar 

  • Saravanan, S., & Babu, N. R. (2016). Maximum power point tracking algorithms for photovoltaic system—A review. Renewable and Sustainable Energy Reviews, 57, 192–204.

    Article  Google Scholar 

  • Sera, D., Teodorescu, R., Hantschel, J., & Knoll, M. (2008). Optimized maximum power point tracker for fast-changing environmental conditions. IEEE Transactions on Industrial Electronics, 55(7), 2629–2637.

    Article  Google Scholar 

  • Tajuddin, M. F. N., Arif, M. S., Ayob, S. M., & Salam, Z. (2015). Erratum to the Perturbative methods for maximum power point tracking (MPPT) of photovoltaic (PV) systems: A review International Journal of Energy Research 2015; 39: 11531178. International Journal of Energy Research, 39(12), 1720–1720.

  • Zakzouk, N. E., Elsaharty, M. A., Abdelsalam, A. K., Helal, A. A., & Williams, B. W. (2016). Improved performance low-cost incremental conductance PV MPPT technique. IET Renewable Power Generation, 10(4), 561–574.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mahdi Rezaei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, M.M., Asadi, H. A Modified perturb-and-observe-based Maximum Power Point Tracking Technique for Photovoltaic Energy Conversion Systems. J Control Autom Electr Syst 30, 822–831 (2019). https://doi.org/10.1007/s40313-019-00495-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-019-00495-6

Keywords

Navigation