Skip to main content
Log in

Proposal for Automation and Control of a PEM Fuel Cell Stack

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

Operation of a PEM fuel cell stack demands for control of some selected variables in the sake of safety, efficiency and prevention of membrane and electrode damages. Among these variables are the hydrogen pressure, stack temperature, membrane humidity, water concentration and the impurities accumulated on the anode. Several tests were performed to monitor and control these quantities on a 3-kW prototype stack. A few distinct control techniques were implemented in this stack as described in this paper in addition to the main practical operational results at distinct power levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Baik, K. D., & Kim, M. S. (2011). Characterization of nitrogen gas crossover through the membrane in proton-exchange membrane fuel cells. International Journal of Hydrogen Energy, 36, 732–739.

    Article  Google Scholar 

  • Cheng, S., Fang, C., Xu, L., Li, J., & Ouyang, M. (2015). Model-based temperature regulation of a PEM fuel cell system on a city bus. International Journal of Hydrogen Energy, 40(39), 13566–13575.

    Article  Google Scholar 

  • Chen, Y., Yang, C., & Lee, J. (2014). Implementation and evaluation for anode purging of a fuel cell based on nitrogen concentration. Applied Energy, 113, 1519–1524.

    Article  Google Scholar 

  • Farret, F., & Simões, M. (2006). Integration of alternative sources of energy. New Jersey, United States: IEEE Press-Wiley-Interscience.

    Google Scholar 

  • Fuglevand, W. A., Bayyuk, S. I., Loyd, G. A, Devries, P. D., Lott, D. R., & Scartozzi, J. P. (2002). Fuel cell power system and methods of controlling a fuel cell power system. US Patent 6,387,556 B1, to Avista Labs, May. 14.

  • Fuglevand, W. A., Devries, P. D., Loyd, G. A., Lott, D. R., & Scartozzi, J. P. (2000). Fuel cell and method for controlling same. US Patent 6,096,449, to Avista Labs, Aug. 1.

  • Gonzatti, F., Kuhn, V. N., Ferrigolo, F. Z., Miotto, M., & Farret, F. A. (2014). Theoretical and practical analysis of the fuel cell integration of an energy storage plant using hydrogen. In 11th IEEE/IAS international conference on industry applications (INDUSCON), Juiz de Fora–MG.

  • Gonzatti, F., & Farret, F. A. (2017). Mathematical and experimental basis to model energy storage systems composed of electrolyzer, metal hydrides and fuel cells. Energy Conversion and Management, 132, 241–250.

    Article  Google Scholar 

  • Gonzatti, F., Nizolli, V., Ferrigolo, F., Farret, F., & de Mello, M. (2016). Experimental hydrogen plant with metal hydrides to store and generate electrical power. International Journal of Emerging Electric Power Systems, 17(1), 59–67.

    Article  Google Scholar 

  • Hirschenhofer, J. H., Stauffer, D. B., Engleman, R. R., & Klett, M. G. (2005). Fuel cell handbook (6th ed.). London: Pearson Corporation.

    Google Scholar 

  • Horizon Fuel Cell 3000W Fuel cell stack user manual, 29 p. 2013.

  • Hou, Y., Shen, C., Yang, Z., & He, Y. (2012). A dynamic voltage model of a fuel cell stack considering the effects of hydrogen purge operation. Renewable Energy, 44, 246–251.

    Article  Google Scholar 

  • Kim, J., Kim, D., Kim, S., Nam, S. W., & Kim, T. (2014). Humidification of polymer electrolyte membrane fuel cell using short circuit control for unmanned aerial vehicle applications. International Journal of Hydrogen Energy, 39, 7925–7930.

    Article  Google Scholar 

  • Larminie, J., & Dicks, A. (2003). Fuel cell systems explained. Chichester, West Sussex: Wiley.

    Book  Google Scholar 

  • Mokmeli, A., & Asghari, S. (2010). An investigation into the effect of anode purgingon the fuel cell performance. International Journal of Hydrogen Energy, 35, 9276–9282.

    Article  Google Scholar 

  • Nikiforow, K., Karimäki, H., Keränen, T. M., & Ihonen, J. (2013). Optimization study of purge cycle in proton exchange membrane fuel cell system. Journal of Power Sources, 238, 336–344.

    Article  Google Scholar 

  • Ozen, D. N., Timurkutluk, B., & Altinisik, K. (2016). Effects of operation temperature and reactant gas humidity levels on performance of PEM fuel cells. Renewable and Sustainable Energy, 59, 1298–1306.

    Article  Google Scholar 

  • Pei, P., & Chen, H. (2014). Main factors affecting the lifetime of proton exchange membrane fuel cells in vehicle applications: A review. Applied Energy, 125, 60–75.

    Article  Google Scholar 

  • Rabbani, A., & Rokn, M. (2013). Effect of nitrogen crossover on purging strategy in PEM fuel cell systems. Applied Energy, 111, 1061–1070.

  • Riascos, L.A.M., & Pereira, D. D. (2009). Optimal temperature control in PEM fuel cells. In Industrial electronics IECON’09, 35th annual conference of IEEE, November 2009, Porto, Portugal, pp. 2778.

  • Riascos, L. A. M., Simões, M. G., Cozman, F. G., & Miyagi, P. E. (2006). Bayesian network supervision on fault tolerant fuel cells. In 41st IAS annual meeting, Octuber 2006, Tampa, Florida, vol. 2, pp. 1059–1066.

  • Saygili, Y., Eroglu, I., & Kincal, S. (2015). Model based temperature controller development for water cooled PEM fuel cell systems. International Journal of Hydrogen Energy, 40(1), 615–622.

    Article  Google Scholar 

  • Simões, M. G., & Shaw, I. S. (2007). Fuzzy control and modeling (Controle e Modelagem Fuzzy), Ed. Blucher, 2th ed, São Paulo-SP, Brazil.

  • Strahl, S., Husar, A., & Riera, J. (2014). Experimental study of hydrogen purge effects on performance and efficiency of an open-cathode Proton Exchange Membrane fuel cell system. Journal of Power Sources, 248, 474–482.

    Article  Google Scholar 

  • Yu, X., Pingwen, M., Ming, H., Baolian, Y., & Shao, Z. (2009). The critical pressure drop for the purge process in the anode of a fuel cell. Journal of Power Sources, 188, 163–169.

    Article  Google Scholar 

  • Zhan, Y., Guo, Y., Zhu, J., & Li, L. (2014). Current short circuit implementation for performance improvement and lifetime extension of proton exchange membrane fuel cell. Journal of Power Sources, 270, 183–192.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to CEEE-GT and CEESP/UFSM for the infrastructure support and financial conditions to develop this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Gonzatti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzatti, F., Miotto, M. & Farret, F.A. Proposal for Automation and Control of a PEM Fuel Cell Stack. J Control Autom Electr Syst 28, 493–501 (2017). https://doi.org/10.1007/s40313-017-0322-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-017-0322-2

Keywords

Navigation