Skip to main content

Advertisement

Log in

A Method for Optimization of Five-Phase Induction Machines Based on Genetic Algorithms

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

The optimization of five-phase induction machines is addressed using a new procedure based on genetic algorithms. A constrained optimization model is introduced which considers the main machine dimensions as free variables. Number of stator and rotor slots, winding pitch, and rotor bar inclination angle are among the free design variables. In addition, the relationship between fundamental and third harmonic component of the airgap induction is also considered as a free variable. This relationship is used to shape the airgap induction making it near to a trapezoid, thus potentially increasing the output torque. The underlying machine model used in the optimization process is detailed in previous works and includes the effect of losses and saturation on the steady state performance. Thus, a mixed-integer optimization problem is defined, in which the continuous variables are codified as integer variables making the optimization problem easier to solve. Three objective functions are defined and tested: efficiency, cost of conductor material, and a weighted combination of efficiency and material costs; other objective functions can be defined, too. The proposed method was applied to the optimization of a 5.5-kW prototype machine, and the results are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdel-Khalik, A., Mostafa Gadoue, S., Masoud, M., & Wiliams, B. (2011). Optimum flux distribution with harmonic injection for a multiphase induction machine using genetic algorithms. Energy Conversion, IEEE Transactions on, 26(2), 501–512. doi:10.1109/TEC.2010.2093139.

    Article  Google Scholar 

  • Andersen, O. W. (1967). Optimum design of electrical machines. Power Apparatus and Systems, IEEE Transactions on, PAS–86(6), 707–711. doi:10.1109/TPAS.1967.291882.

    Article  Google Scholar 

  • Appelbaum, J., Fuchs, E., & White, J. (1987). Optimization of three-phase induction motor design part I: Formulation of the optimization technique. Energy Conversion, IEEE Transactions on, EC–2(3), 407–414. doi:10.1109/TEC.1987.4765866.

    Article  Google Scholar 

  • Appelbaum, J., Khan, I. A., Fuchs, E., & White, J. (1987). Optimization of three-phase induction motor design part II: The efficiency and cost of an optimal design. Energy Conversion, IEEE Transactions on, EC–2(3), 415–422. doi:10.1109/TEC.1987.4765867.

    Article  Google Scholar 

  • Bianchi, N., & Bolognani, S. (1998). Design optimisation of electric motors by genetic algorithms. Electric Power Applications, IEE Proceedings, 145(5), 475–483. doi:10.1049/ip-epa:19982166.

    Article  Google Scholar 

  • Chalmers, B., & Bennington, B. (1967). Digital-computer program for design synthesis of large squirrel-cage induction motors. Electrical Engineers, Proceedings of the Institution of, 114(2), 261–268. doi:10.1049/piee.1967.0052.

    Article  Google Scholar 

  • Chun, Y. D., Han, P. W., Choi, J. H., & Koo, D. H. (2008). Multiobjective optimization of three-phase induction motor design based on genetic algorithm. In Electrical Machines, 2008. ICEM 2008. 18th International Conference on, pp. 1–4. doi:10.1109/ICELMACH.2008.4800013

  • de Silva, P., Fletcher, J., & Williams, B. (2006). Design of a five-phase induction motor using flux distribution optimisation. In Power electronics, machines and drives, 2006. PEMD 2006. The 3rd IET international conference on, pp. 331–335.

  • Duan, Y., & Harley, R. (2011). A novel method for multiobjective design and optimization of three phase induction machines. Industry Applications, IEEE Transactions on, 47(4), 1707–1715. doi:10.1109/TIA.2011.2156372.

    Article  Google Scholar 

  • Eiben, A., & Smith, J. (2003). Introduction to evolutionary computing. Natural computing series. Berlin: Springer. http://books.google.com/books?id=7IOE5VIpFpwC.

  • Erlicki, M., & Appelbaum, J. (1965). Optimized parameter analysis of an induction machine. Power Apparatus and Systems, IEEE Transactions on, 84(11), 1017–1024. doi:10.1109/TPAS.1965.4766133.

    Article  Google Scholar 

  • Fetih, N., & El-Shewy, H. M. (1986). Induction motor optimum design, including active power loss effect. Energy Conversion, IEEE Transactions on, EC–1(3), 155–160. doi:10.1109/TEC.1986.4765749.

    Article  Google Scholar 

  • Godwin, G. L. (1959). Optimum machine design by digital computer. Power apparatus and systems, part III. Transactions of the American Institute of Electrical Engineers, 78(3), 478–487. doi:10.1109/AIEEPAS.1959.4500359.

    Google Scholar 

  • Herzog, G. W., Andersen, O. W., Scrimgeour, J., & Chow, W. S. (1959). The application of digital computers to rotating-machine design. Power apparatus and systems, part III. Transactions of the American Institute of Electrical Engineers, 78(3), 814–819. doi:10.1109/AIEEPAS.1959.4500442.

    MATH  Google Scholar 

  • Idir, K., Chang, L., & Dai, H. (1998). Error-based global optimization approach for electric motor design. Magnetics, IEEE Transactions on, 34(5), 2861–2864. doi:10.1109/20.717666.

    Article  Google Scholar 

  • Ion, B., & Syed, A. N. (2010). The induction machine design handbook (2nd ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Jacobina, C., Freitas, I., Oliveira, T., da Silva, E., & Lima, A. (2004). Fault tolerant control of five-phase ac motor drive. In Power electronics specialists conference, 2004. PESC 04. 2004 IEEE 35th Annual, vol. 5, pp. 3486–3492. doi:10.1109/PESC.2004.1355091

  • Jazdzynski, W. (1989). Multicriterial optimisation of squirrel-cage induction motor design. Electric Power Applications, IEE Proceedings B, 136(6), 299–307.

    Article  Google Scholar 

  • Le Besnerais, J., Lanfranchi, V., Hecquet, M., & Brochet, P. (2008). Multiobjective optimization of induction machines including mixed variables and noise minimization. Magnetics, IEEE Transactions on, 44(6), 1102–1105. doi:10.1109/TMAG.2007.916173.

    Article  Google Scholar 

  • Liuzzi, G., Lucidi, S., Parasiliti, F., & Villani, M. (2003). Multiobjective optimization techniques for the design of induction motors. Magnetics, IEEE Transactions on, 39(3), 1261–1264. doi:10.1109/TMAG.2003.810193.

    Article  Google Scholar 

  • Moses, J., Kinley, J., Lang, J. H., Tabors, R., & de Caudra Garcia, F. (1994). A computer-based design assistant for induction motors. Industry Applications, IEEE Transactions on, 30(6), 1616. doi:10.1109/TIA.1994.350340.

    Article  Google Scholar 

  • Pereira, L. A., & Haffner, S. (2011). Five phase induction machine optimization using heuristic methods. In Iberian Latin American congress on computational methods in engineering, CILAMCE, 2011, pp. 1–20.

  • Pereira, L. A., Haffner, S., Pereira, L. F., Benvenuti, R. A., & da Rosa, R. S. (2015). Parameterized model and performance of five-phase induction machines including losses and saturation. Journal of Control, Automation and Electrical Systems, 26(3), 255–271. doi:10.1007/s40313-015-0169-3.

    Article  Google Scholar 

  • Pereira, L. A., Scharlau, C. C., Pereira, L. F. A., & Haffner, S. (2012). Influence of saturation on the airgap induction waveform of five-phase induction machines. Energy Conversion, IEEE Transactions on, 27(1), 29–41. doi:10.1109/TEC.2011.2169674.

    Article  Google Scholar 

  • Ramarathnam, R., & Desai, B. (1971). Optimization of polyphase induction motor design: A nonlinear programming approach. Power Apparatus and Systems, IEEE Transactions on, PAS–90(2), 570–578. doi:10.1109/TPAS.1971.293060.

    Article  Google Scholar 

  • Ramarathnam, R., Desai, B., & Rao, V. S. (1973). A comparative study of minimization techniques for optimization of induction motor design. Power Apparatus and Systems, IEEE Transactions on, PAS–92(5), 1448–1454. doi:10.1109/TPAS.1973.293688.

    Article  Google Scholar 

  • Sakthivel, V., & Subramanian, S. (2011). Energy conservation through improved design of three-phase squirrel cage induction motor using BF optimization algorithm. In International conference on computer, communication and electrical technology, ICCCET, 2011, pp. 327–332.

  • Sakthivel, V., & Subramanian, S. (2011). Using MPSO algorithm to optimize three-phase squirrel cage induction motor design. In International conference on emerging trends in electrical and computer technology, ICETECT, 2011, pp. 261–267.

  • Scharlau, C., Pereira, L. F. A., Pereira, L. A., & Haffner, S. (2008). Performance of a five-phase induction machine with optimized air gap field under open loop \(v/f\) control. IEEE Transactions on Energy Conversion, 23(4), 1046–1056.

    Article  Google Scholar 

  • Singh, B., Singh, B., Murthy, S., & Jha, C. (1983). Experience in design optimization of induction motor using ‘sumt’ algorithm. Power Apparatus and Systems, IEEE Transactions on, PAS–102(10), 3379–3384. doi:10.1109/TPAS.1983.317834.

    Article  Google Scholar 

  • Singh, C., & Sarkar, D. (1992). Practical considerations in the optimisation of induction motor design. Electric Power Applications, IEE Proceedings B, 139(4), 365–373.

    Article  Google Scholar 

  • Tindall, C., & Calvert, P. (1977). Computer-aided synthesis and optimization of induction motor design. Manufacturing Technology, IEEE Transactions on, 6(2), 31–37. doi:10.1109/TMFT.1977.1136228.

    Article  Google Scholar 

  • Toliyat, H., & Lipo, T. (1994). Analysis of concentrated winding induction machines for adjustable speed drive applications-experimental results. IEEE Transactions on Energy Conversion, 9(4), 695–700. doi:10.1109/60.368339.

    Article  Google Scholar 

  • Toliyat, H., Lipo, T., & White, J. (1991). Analysis of a concentrated winding induction machine for adjustable speed drive applications. II. Motor design and performance. IEEE Transactions on Energy Conversion, 6(4), 684–692. doi:10.1109/60.103642.

    Article  Google Scholar 

  • Tutelea, L., & Boldea, I. (2010). Induction motor electromagnetic design optimization: Hooke Jeeves method versus genetic algorithm. In International conference on optimization of electrical and electronic equipment, OPTIM, 2010, pp. 485–492.

  • Vaks, N., Pekarek, S., & Sudhoff, S. (2010). Empirical models of the performance tradeoffs in induction machines. In Power and energy conference at Illinois, PECI, 2010, pp. 51–57.

  • Veinott, C. (1956). Induction machinery design being revolutionized by the digital computer [includes discussion]. Power apparatus and systems, part III. Transactions of the American Institute of Electrical Engineers, 75(3). doi:10.1109/AIEEPAS.1956.4499467

  • Veinott, C. (1960). Synthesis of induction motor designs on a digital computer. Power apparatus and systems, part III. Transactions of the American Institute of Electrical Engineers, 79(3), 12–18. doi:10.1109/AIEEPAS.1960.4500685.

    Google Scholar 

  • Wieczorek, J., Gol, O., & Michalewicz, Z. (1998). An evolutionary algorithm for the optimal design of induction motors. Magnetics, IEEE Transactions on, 34(6), 3882–3887. doi:10.1109/20.728298.

    Article  Google Scholar 

  • Xu, H., Toliyat, H., & Petersen, L. (2002). Five-phase induction motor drives with DSP-based control system. IEEE Transactions on Power Electronics, 17(4), 524–533.

    Article  Google Scholar 

  • Zhang, D., Park, C. S., & Koh, C. S. (2012). A new optimal design method of rotor slot of three-phase squirrel cage induction motors for NEMA class D speed-torque characteristic using multi-objective optimization algorithm. IEEE Transactions on Magnetics, 48(2), 879–882.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank WEG Motors (Santa Catarina—Brazil) for the support on developing and building the prototype machines and the test rig. The authors also thank to the Brazilian research funding agencies FAPERGS (process number 110894/2) and CNPq (process number 485972/2011-5) for their financial support. Finally, the authors thank the CNPq for the research support associated with Grants 303650/2011-7, 303842/2011-3 and 140357/2013-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sérgio Haffner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haffner, S., Pereira, L.A. & Pereira, L.F.A. A Method for Optimization of Five-Phase Induction Machines Based on Genetic Algorithms. J Control Autom Electr Syst 26, 521–534 (2015). https://doi.org/10.1007/s40313-015-0197-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-015-0197-z

Keywords

Navigation