Skip to main content
Log in

Takagi Hayashi Fuzzy Neural System in Hardware: An Application For Embedding in Industrial Sensors, Making them Intelligent

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

There is an increasing tendency of industrial sensors becoming intelligent devices when they incorporate additional functions to their primary task of measuring. The embedded systems follow the tendency to use computational intelligence tools in an embedded way in machines, sensors, and actuators, making them intelligent. There are several works in the field of embedded systems, sensors, and pure or hybrid intelligent systems; however, few unite these fields into one single project. This work shows a Takagi Hayashi Fuzzy Neural system for embedding in industrial sensors, making them intelligent devices with the function of automatically detecting calibration errors and self-compensating in operation. The system was tested with data from actual sensors, and the results were analyzed with regard to the speed of execution, frequency of data input in the system, and the number of logic elements used. The results obtained showed that embedding the proposed system in industrial sensors is viable for making intelligent devices. The system proposed was able to self-compensate for errors caused by sensor decalibration and to identify the moment to perform a new calibration after the advanced deterioration of the sensor. The software Quartus II\(^\circledR \), from Altera\(^\circledR \), was used to develop the project, perform the simulation, and analyze the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bellis, S., Razeeb, K., Saha, C., Delaney, K., Mathuna, C., Pounds-Cornish, A., de Souza, G., Colley, M., Hagras, H., Clarke, G., Callaghan, V., Argyropoulos, C., Karistianos, C. & Nikiforidis, G. (2004). FPGA implementation of spiking neural networks—an initial step towards building tangible collaborative autonomous agents. Proceedings of the IEEE International Conference on Field Programmable Technology pp. 449–452.

  • Chakra, S. A., & Huyart, B. (2004). Auto calibration with training sequences for wireless local loop at 26 GHz. IEEE Microwave and Wireless Components Letters, 14(8), 392–394.

    Article  Google Scholar 

  • Clemons, T. M, I. I. I., Chang, K. C. C., & George, M. (2012). Sensor calibration using in-situ celestial observations to estimate bias in space-based missile tracking. IEEE Transactions on Aerospace and Electronic Systems, 48(2), 1403–1427.

    Article  Google Scholar 

  • Ding, W., Hayashi, R., Suehiro, J., Zhou, G., Imasaka, K., & Hara, M. (2006). Calibration methods of carbon nanotube gas sensor for partial discharge detection in SF/sub 6/. IEEE Transactions on Dielectrics and Electrical Insulation, 13(2), 353–361.

    Article  Google Scholar 

  • Goh, C. Z. D., Georgiou, P., Constandinou, T. G., Prodromakis, T., & Toumazou, C. (2011). A CMOS-based ISFET chemical imager with auto-calibration capability. IEEE Sensors Journal, 11(12), 3253–3260.

    Article  Google Scholar 

  • Gubian, M., Marconato, A., Boni, A., & Petri, D. (2009). A study on uncertainty-complexity tradeoffs for dynamic nonlinear sensor compensation. IEEE Transactions on Instrumentation and Measurement, 58(1), 26–32.

    Article  Google Scholar 

  • Guély, F., Siarry, P. (1993). Gradient descent method for optimization various fuzzy rules. In Proceedings of Second IEEE International Conference on Fuzzy Systems pp. 1241–1246.

  • Hayashi, I., Nomura, H., Yamasaki, H., & Wakami, N. (1992). Contruction of inference rules by NDF and NDFL. International Journing of Approximating Reasoning, 6, 241–266.

    Article  MATH  Google Scholar 

  • Haykin, S. (1999). Neural networks: A comprehensive foundation (2nd ed.). Hamilton: Prentice-Hall.

    MATH  Google Scholar 

  • Hichihashi, H., Miyoshi, T., Nagasaka, K. (1993). Computed tomography by neuro-fuzzy inversion. Proceedings 1993 Joint Conference on Neural Networks, Part 1 (of 3), Nagoya, pp. 709–712.

  • Holt, J., & Hwang, J. N. (1993). Finite precision error analysis of neural network hardware implementations. IEEE Transactions on Computers, 42(3), 281–290.

    Article  Google Scholar 

  • Hurdle, J. F. (1997). The synthesis of compact fuzzy neural circuits. IEEE Transactions on Fuzzy Systems, 5(1), 44–55.

    Article  Google Scholar 

  • Jang, J. S., & Sun, C. T. (1995). Neuro-fuzzy modeling and control. Proceedings of the IEEE, 83(3), 378–406.

    Article  Google Scholar 

  • Jeronymo, D. C., Borges, Y. C. C., & Coelho, L. S. (2011). A calibration approach based on Takagi–Sugeno fuzzy inference system for digital electronic compasses. Expert Systems with Applications, 38(11), 13688–13693.

    Google Scholar 

  • Juang, C., & Tsao, Y. (2008). A type-2 self-organizing neural fuzzy system and its FPGA implementation. IEEE Transactions on Systems Man and Cybernetics, 38(6), 1537–1548.

    Article  Google Scholar 

  • Juang, C. F., Chiu, S. H., & Chang, S. W. (2007). A self-organizing TS-type fuzzy network with support vector learning and its application to classification problems. IEEE Transactions on Fuzzy Systems, 15(5), 998–1008.

    Article  Google Scholar 

  • Krips, M., Lammert, T., Kummert A. (2002). FPGA implementation of a neural network for a real-time hand tracking system. Proceedings of First IEEE International Workshop on Electronic Design Test and Applications, pp. 313–317.

  • Lee, S. T., Fang, S. J. J., Allstot, D. J., Bellaouar, A. L., Fridi, A. R., & Fontaine, P. A. (2004). A quad-band GSM-GPRS transmitter with digital auto-calibration. IEEE Journal of Solid-State Circuits, 39(12), 2200–2214.

    Article  Google Scholar 

  • Li, H. X., & Liu, Z. (2008). A probabilistic neural-fuzzy learning system for stochastic modeling. IEEE Transactions on Fuzzy Systems, 16(4), 898–908.

    Article  Google Scholar 

  • Li, H., Zhang, D., & Foo, S. (2006). A stochastic digital implementation of a neural network controller for small wind turbine systems. IEEE Transactions on Power Electronics, 21(5), 1502–1507.

    Article  Google Scholar 

  • Lopez-Garcia J., Moreno-Armendariz M., Riera-Babures J., Balsi M., Vilasis-Cardona X. (2005) Real time vision by FPGA implemented CNNs. Proceedings of the 2005 European Conference on Circuit Theory and Design (vol. 1) pp. 281–284.

  • Misha, J. & Saha, I. (2010). Artificial neural networks in Hardware: A survey of two decades of progress. Neurocomputing, 74, 239–255.

  • Nomura, H., Hayashi, I., & Wakami, N. (1994). A self-tunning method of fuzzy reasoning by genetic algorithms. In A. Candel & G. Langholz (Eds.), Fuzzy Control Systems (pp. 338–354). Boca Raton: CRC Press.

  • Parkinson, S., Longstaff, A. P., Fletcher, S., Crampton, A., & Gregory, P. (2012). Automatic planning for machine tool calibration: A case study. Expert Systems with Applications, 39(13), 11367–11377.

  • Patra, J. C., Juhola, M., & Meher, P. K. (2008). Intelligent sensors using computationally efficient Chebyshev neural networks. IET Science Measurement and Technology, 2(2), 68–75.

    Article  Google Scholar 

  • Pereira, D. R. V., Cagni Júnior, E., Melo, J. D., & Dória Neto, A. D. (2005). The implementation of the self-calibration, self-compensation and self-validation algorithms for foundation Fieldbus sensors are resented using standard function blocks. IEEE International Conference on Computational Intelligence for Measurement Systems and Applications pp. 220–225.

  • Pereira, J. M. D., Postolache, O. A., & Girão, P. M. B. S. (2005). Adaptive self-calibration algorithm for smart sensors linearization. Instrumentation and measurement technology conference, 2005. IMTC 2005. Proceedings of the IEEE, 1, 648–652.

  • Prado, R. N. A., Melo, J. D., Oliveira, J. A. N., Dória Neto, A. D. (2012). FPGA based implementation of a fuzzy neural network modular architecture for embedded systems. WCCI 2012 IEEE World Congress on Computational Intelligence pp. 610–616.

  • Ramakrishnan, N., Ertin, E., & Moses, R. L. (2011). Gossip-based algorithm for joint signature estimation and node calibration in sensor networks. IEEE Journal of Selected Topics in Signal Processing, 5(4), 665–673.

    Article  Google Scholar 

  • Shin, J., & Shin, H. (2012). A 1.9–3.8 GHz fractional-N PLL frequency synthesizer with fast auto-calibration of loop bandwidth and VCO frequency. IEEE Journal of Solid-State Circuits, 47(3), 665–675.

    Article  Google Scholar 

  • Simões, M. G., & Shaw, I. S. (2007). Controle e Modelagem fuzzy (2nd ed.). Sao Paulo: Editora Blucher, FAPESP.

    Google Scholar 

  • Terano, T., Asai, K., & Sugeno, M. (1994). Applied fuzzy systems. Boston: Academic Press.

    Google Scholar 

  • Togai, M., & Watanabe, H. (1986). Expert system on a chip: An engine for real-time approximate reasoning. IEEE Expert, 1(3), 55–62.

    Article  Google Scholar 

  • Tsoukalas, L. H., & Uhrig, R. E. (1997). Fuzzy and neural approaches in engineering. New York: Wiley Interscience Publications.

    Google Scholar 

  • Viberg, M., & Swindlehurst, L. L. (1994). A Bayesian approach to auto-calibration for parametric array signal processing. IEEE Transactions on Signal Processing, 42(12), 3495–3507.

    Article  Google Scholar 

  • Wang, D., & Terman, D. (1997). Image segmentation based on oscillatory correlation. Neural Computation, 9(4), 805–836.

    Article  Google Scholar 

  • Wang, W. Y., & Li, Y. H. (2003). Evolutionary learning of BMF fuzzy-neural networks using a reduced-form genetic algorithm. IEEE Transactions on Systems Man and Cybernetics, 33(6), 808–816.

    Google Scholar 

  • Weeks, M., Freeman, M., Moulds, A., & Austin, J. (2005). Developing hardware-based applications using PRESENCE-2. Perspectives in pervasive computing (pp. 469–474). London: Savoy Place.

    Google Scholar 

  • Whang, L. X. (1994). Adaptative fuzzy system and control. Englewood Clifs: Prentice Hall.

    Google Scholar 

  • Wu, A., & Tam, P. K. S. (2000). A fuzzy neural network based on fuzzy hierarchy error approach. IEEE Transactions on Fuzzy Systems, 8(6), 966–976.

    Google Scholar 

  • Yamakawa, T., & Miki, T. (1986). The current mode fuzzy logic integrated circuits fabricated by the standard CMOS process. IEEE Transactions on Computers, C–35(2), 161–167.

    Article  Google Scholar 

  • Yang, F., & Paindavoine, M. (2003). Implementation of an RBF neural network on embedded systems: real-time face tracking and identity verification. IEEE Transaction on Neural Networks, 14(5), 1162–1175.

    Article  Google Scholar 

  • Zavalla, A. H., & Camacho Nieto, O. (2012). Fuzzy hardware: A retrospective and analysis. IEEE Transactions on Fuzzy Systems, 20(4), 623–635.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. A. Prado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prado, R.N.A., Oliveira, J.A.N., Melo, J.D. et al. Takagi Hayashi Fuzzy Neural System in Hardware: An Application For Embedding in Industrial Sensors, Making them Intelligent. J Control Autom Electr Syst 25, 585–596 (2014). https://doi.org/10.1007/s40313-014-0131-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-014-0131-9

Keywords

Navigation