Skip to main content
Log in

Sparse-grid Sampling Recovery and Numerical Integration of Functions Having Mixed Smoothness

  • Published:
Acta Mathematica Vietnamica Aims and scope Submit manuscript

Abstract

We give a short survey of recent results on sparse-grid linear algorithms of approximate recovery and integration of functions possessing a unweighted or weighted Sobolev mixed smoothness based on their sampled values at a certain finite set. Some of them are extended to more general cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bakhvalov, N.: Optimal convergence bounds for quadrature processes and integration methods of Monte Carlo type for classes of functions. Zh. Vychisl. Mat. i Mat. Fiz. 4(4), 5–63 (1963)

    MathSciNet  Google Scholar 

  2. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)

    Google Scholar 

  3. Besov, O.: Multiplicative estimates for integral norms of differentiable functions of several variables. Proc. Steklov Inst. Math. 131, 1–14 (1974)

    MathSciNet  Google Scholar 

  4. Bungartz, H.J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)

    Article  MathSciNet  Google Scholar 

  5. Byrenheid, G., Dũng, D., Sickel, W., Ullrich, T.: Sampling on energy-norm based sparse grids for the optimal recovery of Sobolev type functions in \(H^{\gamma }\). J. Approx. Theory 207, 207–231 (2016)

    Article  MathSciNet  Google Scholar 

  6. Byrenheid, G., Ullrich, T.: Optimal sampling recovery of mixed order Sobolev embeddings via discrete Littlewood-Paley type characterizations. Anal. Math. 43, 133–191 (2017)

    Article  MathSciNet  Google Scholar 

  7. Chui, C.K.: An Introduction to Wavelets. Academic Press (1992)

  8. Creutzig, J., Wojtaszczyk, P.: Linear vs. nonlinear algorithms for linear problems. J. Complexity 20, 807–820 (2004)

    Article  MathSciNet  Google Scholar 

  9. Dũng, D.: On recovery and one-sided approximation of periodifunctions of several variables. Dokl. Akad. Nauk SSSR, Ser. Mat. 313, 787–790 (1990)

    Google Scholar 

  10. Dũng, D.: On optimal recovery of multivariate periodic functions. In: S. Igary (ed.)HarmonicAnalysis (Conference Proceedings), Springer-Verlag1991, Tokyo-Berlin pp. 96–105 (1991)

  11. Dũng, D.: Non-linear sampling recovery based on quasi-interpolant wavelet representations. Adv.  Comput. Math. 30, 375–401 (2009)

  12. Dũng, D.: B-spline quasi-interpolant representations and sampling recovery of functions with mixed smoothness. J. Complexity 27, 541–567 (2011)

    Article  MathSciNet  Google Scholar 

  13. Dũng, D.: Sampling and cubature on sparse grids based on a B-spline quasi-interpolation. Found. Comp. Math. 16, 1193–1240 (2016)

    Article  MathSciNet  Google Scholar 

  14. Dũng, D.: B-spline quasi-interpolation sampling representation and sampling recovery in Sobolev spaces of mixed smoothness. Acta Math. Vietnam. 43, 83–110 (2018)

    Article  MathSciNet  Google Scholar 

  15. Dũng, D.: Numerical weighted integration of functions having mixed smoothness. J. Complexity 78, 101757 (2023)

    Article  MathSciNet  Google Scholar 

  16. Dũng, D., Nguyen, V.K.: Optimal numerical integration and approximation of functions on \(\mathbb{R}^d\) equipped with Gaussian measure. IMA Journal of Numerical Analysis (2023) https://doi.org/10.1093/imanum/drad051

  17. Dũng, D., Temlyakov, V.N., Ullrich, T.: Hyperbolic Cross Approximation. Advanced Courses in Mathematics - CRM Barcelona, Birkhäuser/Springer (2018)

    Book  Google Scholar 

  18. Dũng, D., Ullrich, T.: Lower bounds for the integration error for multivariate functions with mixed smoothness and optimal Fibonacci cubature for functions on the square. Math. Nachr. 288, 743–762 (2015)

    Article  MathSciNet  Google Scholar 

  19. Dai, F., Temlyakov, V.: Random points are good for universal discretization. J. Math. Anal. Appl. 529 (2024)

  20. Della Vecchia, B., Mastroianni, G.: Gaussian rules on unbounded intervals. J. Complexity 19, 247–258 (2003)

    Article  MathSciNet  Google Scholar 

  21. Dick, J.: Explicit constructions of quasi-Monte Carlo rules for the numerical integration of high-dimensional periodic functions. SIAM J. Numer. Anal. 45, 2141–2176 (2007)

    Article  MathSciNet  Google Scholar 

  22. Dick, J.: Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary high order. SIAM J. Numer. Anal. 46, 1519–1553 (2008)

    Article  MathSciNet  Google Scholar 

  23. Dick, J., Irrgeher, C., Leobacher, G., Pillichshammer, F.: On the optimal order of integration in Hermite spaces with finite smoothness. SIAM J. Numer. Anal. 56, 684–707 (2018)

    Article  MathSciNet  Google Scholar 

  24. Dick, J., Kuo, F.Y., Sloan, I.H.: High-dimensional integration: the quasi-Monte Carlo way. Acta Numer. 22, 133–288 (2013)

    Article  MathSciNet  Google Scholar 

  25. Dick, J., Pillichshammer, F.: Digital Nets and Sequences. Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  26. Dolbeault, M., Krieg, D., Ullrich, M.: A sharp upper bound for sampling numbers in \(L_2\). Appl. Comput. Harmon. Anal. 63, 113–134 (2023)

    Article  MathSciNet  Google Scholar 

  27. Frolov, K.K.: Upper error bounds for quadrature formulas on function classes. Dokl. Akad. Nauk SSSR 231, 818–821 (1976)

    MathSciNet  Google Scholar 

  28. Goda, T., Suzuki, K., Yoshiki, T.: Optimal order quadrature error bounds for infinite dimensional higher order digital sequences. Found. Comput. Math. 18, 433–458 (2018)

    Article  MathSciNet  Google Scholar 

  29. Irrgeher, C., Kritzer, P., Leobacher, G., Pillichshammer, F.: Integration in Hermite spaces of analytic functions. J. Complexity 31, 308–404 (2015)

    Article  MathSciNet  Google Scholar 

  30. Irrgeher, C., Leobacher, G.: High-dimensional integration on the \(\mathbb{R} ^d\), weighted Hermite spaces, and orthogonal transforms. J. Complexity 31, 174–205 (2015)

    Article  MathSciNet  Google Scholar 

  31. Jahn, T., Ullrich, T., Voigtlaender, F.: Sampling number sof smoothness classes via \(\ell ^1\)-minimization. J. Complexity 79 (2023)

  32. Junghanns, P., Mastroianni, G., Notarangelo, I.: Weighted Polynomial Approximation and Numerical Methods for Integral Equations. Birkhäuser (2021)

  33. Krieg, D., Pozharska, K., Ullrich, M., Ullrich, T.: Sampling recovery in uniform and other norms. (2023) arXiv: 2305.07539

  34. Lubinsky, D.S.: A survey of weighted polynomial approximation with exponential weights. Surveys in Approximation Theory 3, 1–105 (2007)

    MathSciNet  Google Scholar 

  35. Mastroianni, G., Occorsio, D.: Markov-Sonin Gaussian rule for singular functions. J. Comput. Appl. Math. 169(1), 197–212 (2004)

    Article  MathSciNet  Google Scholar 

  36. Mhaskar, H.N.: Introduction to the Theory of Weighted Polynomial Approximation. World Scientific, Singapore (1996)

    Google Scholar 

  37. Nguyen, V.K., Sickel, W.: Pointwise multipliers for Sobolev and Besov spaces of dominating mixed smoothness. J. Math. Anal. Appl. 452, 62–90 (2017)

    Article  MathSciNet  Google Scholar 

  38. Novak, E., Triebel, H.: Function spaces in Lipschitz domains and optimal rates of convergence for sampling. Constr. Approx. 23, 325–350 (2006)

    Article  MathSciNet  Google Scholar 

  39. Skriganov, M.M.: Constructions of uniform distributions in terms of geometry of numbers. Algebra i Analiz 6, 200–230 (1994)

    MathSciNet  Google Scholar 

  40. Smolyak, S.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk 148, 1042–1045 (1963)

    Google Scholar 

  41. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, Princeton, NJ (1970)

    Google Scholar 

  42. Temlyakov, V.N.: A new way of obtaining lower estimates for the errors of quadrature formulas. Matem. Sb. 181, 1403–1413 (1990)

    Google Scholar 

  43. Temlyakov, V.N.: Error estimates for Fibonacci quadrature formulas for classes of functions with a boundedmixed derivative. Trudy Mat. Inst. Steklov 200, 327–335 (1991)

    Google Scholar 

  44. Temlyakov, V.N.: Approximation of Periodic Functions. Nova Science Publishers Inc, Commack, NY, Computational Mathematics and Analysis Series (1993)

    Google Scholar 

  45. Temlyakov, V.N.: On approximate recovery of functions with bounded mixed derivative. J. Complexity 9, 41–59 (1993)

    Article  MathSciNet  Google Scholar 

  46. Temlyakov, V.N.: Constructive sparse trigonometric approximation and other problems for functions with mixed smoothness. Matem. Sb. 206, 131–160 (2015)

    Article  MathSciNet  Google Scholar 

  47. Temlyakov, V.N.: Multivariate Approximation. Cambridge University Press (2018)

  48. Traub, J., Wasilkowski, G., Wozniakowski, H.: Information-Based Complexity. Academic Press, Inc. (1988)

  49. Triebel, H.: Bases in Function Spaces, Sampling, Discrepancy. Numerical Integration. European Math. Soc. Publishing House, Zürich (2010)

    Book  Google Scholar 

  50. Tripathy, R., Bilionis, I.: Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification. J. Comput. Phys. 375, 565–588 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

A part of this work was done when the author was working at the Vietnam Institute for Advanced Study in Mathematics (VIASM). He would like to thank the VIASM for providing a fruitful research environment and working condition. He expresses thanks to Dr. David Krieg for pointing out the papers [33] and [8] and for useful comments related to these papers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinh Dũng.

Additional information

Dedicated to Professor Ngo Viet Trung.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dũng, D. Sparse-grid Sampling Recovery and Numerical Integration of Functions Having Mixed Smoothness. Acta Math Vietnam (2024). https://doi.org/10.1007/s40306-024-00527-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40306-024-00527-7

Keywords

Mathematics Subject Classification (2020)

Navigation