Skip to main content
Log in

Continuity of the Solution to a Stochastic Time-fractional Diffusion Equations in the Spatial Domain with Locally Lipschitz Sources

  • Published:
Acta Mathematica Vietnamica Aims and scope Submit manuscript

Abstract

We-24pt study the nonlinear stochastic time-fractional diffusion equation in the spatial domain \(\mathbb {R}\) driven by a locally Lipschitz source satisfying

$$\begin{aligned} \left( {~}_{t}D_{0^{+}}^{\alpha } - \frac{\partial ^{2} }{\partial x^{2}}\right) u(t,x) = I_{t}^{\gamma }\left( F(t,x,u)\right) , \end{aligned}$$

where \(x\in \mathbb {R},\alpha \in (0,1],\gamma \ge 1-\alpha \), the source term is defined \(F(t,x,u) = f(t,x,u(t,x))\) \( + \rho (t,x,u(t,x))\dot{W}(t,x)\) and W is the multiplicative space-time white noise. We investigate the existence, uniqueness of a maximal random field solution. Moreover, we prove the stability of the solution with respect to perturbed fractional orders \(\alpha , \gamma \) and the initial condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kochubei, A.N.: The Cauchy problem for evolution equations of fractional order. Differ. Uravn. 25(8), 1359–1368 (1989)

    MathSciNet  Google Scholar 

  2. Nane, E.: Fractional cauchy problems on bounded domains: survey of recent results. Fractional Dynamics and Control, pp. 185–198. Springer, New York (2012)

  3. Nigmatullin, R.R.: The realization of the generalized transfer equation in a medium with fractal geometry. Phys. Status Solidi (b) 133(1), 425–430 (1986)

    Article  MathSciNet  Google Scholar 

  4. Wyss, W.: The fractional diffusion equation. J. Math. Phys. 27(11), 2782–2785 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Meerschaert, M.M., Nane, E., Vellaisamy, P.: Fractional Cauchy problems on bounded domains. Ann. Probab. 37(3), 979–1007 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Meerschaert, M.M., Nane, E., Xiao, Y.: Fractal dimension results for continuous time random walks. Stat. Probab. Lett. 83(4), 1083–1093 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Meerschaert, M.M., Straka, P.: Inverse stable subordinators. Math. Model. Nat. Phenom. 8(2), 1–16 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Orsingher, E., Beghin, L.: Fractional diffusion equations and processes with randomly varying time. Ann. Probab. 37(1), 206–249 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carmona, R., Molchanov, S.: Parabolic Anderson problem and intermittency. Mem. Amer. Math. Soc. 108(518), viii+125 (1994)

    MathSciNet  MATH  Google Scholar 

  10. Bertini, L., Cancrini, N.: The stochastic heat equation: Feynman-Kac formula and intermittence. J. Stat. Phys. 78, 1377–1401 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kardar, M., Parisi, G., Zhang, Y.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889 (1986)

    Article  MATH  Google Scholar 

  12. Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Lecture Notes in Mathematics. Springer, Berlin Heidelberg (2010)

    Book  MATH  Google Scholar 

  13. Mainardi, F., Luchko, Y., Pagnini, G.: The fundamental solution of the space-time fractional diffusion equation. Frac. Calc. Appl. Anal. 4 (2007)

  14. Chen, L.: Nonlinear stochastic time-fractional diffusion equations on \(\mathbb{R}\): moments, Hölder regularity and intermittency. Trans. Amer. Math. Soc. 369(12), 8497–8535 (2017)

  15. Chen, L., Dalang, R.C.: Moments and growth indices for the nonlinear stochastic heat equation with rough initial conditions. Ann. Probab. 43(6), 3006–3051 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, L., Kim, K.: Nonlinear stochastic heat equation driven by spatially colored noise: moments and intermittency. Acta Math. Sci. 39B(3), 645–668 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Aldoghaither, A., Liu, D.-Y., Laleg-Kirati, T.-M.: Modulating functions based algorithm for the estimation of the coefficients and differentiation order for a space-fractional advection-dispersion equation. SIAM J. Scientific Comput. 37(6), A2813–A2839 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cheng, J., Nakagawa, J., Yamamoto, M., Yamazaki, T.: Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation. Inverse Problems 25(11), 115002 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kateregga, M., Mataramvura, S., Taylor, D.: Parameter estimation for stable distributions with application to commodity futures log-returns. Cogent Economics & Finance 5(1), 1318813 (2017)

    Article  Google Scholar 

  20. Wang, W., Cheng, S., Guo, Z., Yan, X.: A note on the continuity for Caputo fractional stochastic differential equations. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(7), 073106 (2020)

  21. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. Int. 13(5), 529–539 (1967)

    Article  Google Scholar 

  22. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Elsevier Science, ISSN (1998)

    MATH  Google Scholar 

  23. Walsh, J.B.: An introduction to stochastic partial differential equations. In: Hennequin, P.L. (ed.) École d’Été de Probabilités de Saint Flour XIV - 1984, pp. 265–439. Springer, Berlin (1986)

    Chapter  Google Scholar 

  24. Mainardi, F., Luchko, Y., Pagnini, G.: The fundamental solution of the space-time fractional diffusion equation. Frac. Calc. Appl. Anal. 4 (2007)

  25. Trong, D., Nane, E., Minh, N., Tuan, N.: Continuity of solutions of a class of fractional equations. Potential Analysis 49 (2018)

  26. Cam, L.L.: The central limit theorem around 1935. Statist. Sci. 1(1), 78–91 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dien, N.M., Nane, E., Minh, N.D., Trong, D.D.: Global solutions of nonlinear fractional diffusion equations with time-singular sources and perturbed orders. Fract. Calc. Appl. Anal. 25(3), 1166–1198 (2022)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank an anonymous referee and the editor for helpful comments that improved the quality and presentation of the paper. The research was supported by Vietnam National University of Hochiminh City [Grant No. B2021-18-02].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Dang Minh.

Additional information

Dedicated to Professor Duong Minh Duc on the occasion of his 70th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trong, D.D., Minh, N.D., Lan, N.N. et al. Continuity of the Solution to a Stochastic Time-fractional Diffusion Equations in the Spatial Domain with Locally Lipschitz Sources. Acta Math Vietnam 48, 237–257 (2023). https://doi.org/10.1007/s40306-023-00503-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40306-023-00503-7

Keywords

Mathematics Subject Classification (2010)

Navigation