Skip to main content
Log in

Continuous Solutions for Degenerate Complex Hessian Equation

  • Published:
Acta Mathematica Vietnamica Aims and scope Submit manuscript

Abstract

Let (X,ω) be an n-dimensional compact Kähler manifold and fix an integer m such that 1 ≤ mn. Let μ be a finite Borel measure on X satisfying the conditions \({\mathscr{H}}_{m}(\delta , A,\omega )\). We study degenerate complex Hessian equations of the form (ω + ddcφ)mωnm = F(φ,.)dμ. Under some natural conditions on F, we prove that if \(0<\delta <\frac {m}{n-m}\), then this equation has a unique continuous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amal, H., Asserda, S., El-Gasmi, A.: Weak solutions to complex Hessian equations in the class \(\mathcal {E}_{{\phi }}(x,{\omega },m)\). Vietnam J. Math. https://doi.org/10.1007/s10013-022-00562-7 (2022)

  2. Benelkourchi, S.: Solutions to complex Monge-Ampère equations on compact Kähler manifolds. C. R. Math. Acad. Sci. Paris 352(7–8), 589–592 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bedford, E., Taylor, B.A.: Dirichlet problem for a complex Monge-Ampère equation. Invent. Math. 37, 1–44 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bedford, E., Taylor, B.A.: A new capacity for plurisubharmonic functions. Acta Math. 149(1–2), 1–40 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cegrell, U., Kołodziej, S.: The equation of complex Monge-Ampère type and stability of solutions. Math. Ann. 334, 713–729 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Demailly, J.-P.: Estimations L2 pour l’opérateur \(\bar {\partial }\) d’un fibré vectoriel holomorphe semipositif au-dessus d’une variété kählérienne complète. Ann. SCi. École Norm. Sup. 15, 457–511 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. Demailly, J. -P., Dinew, S., Guedj, V., Pham, H.H., Kołodziej, S., Zeriahi, A.: Hölder continuous solutions to Monge-Ampère equations. J. Eur. Math. Soc. (JEMS) 16(4), 619–647 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dinew, S., Kołodziej, S.: A priori estimates for complex Hessian equations. Anal. PDE 7(1), 227–244 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dinew, S., Kołodziej, S.: Liouville and Calabi-Yau type theorems for complex Hessian equations. Amer. J. Math. 139(2), 403–415 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gu, D., Nguyen, N.-C.: The Dirichlet problem for a complex Hessian equation on compact Hermitian manifolds with boundary. Annali della Scuola Normale Superiore di Pisa Classe di scienze 18(4), 1189–1248 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Guedj, V., Zeriahi, A.: Weighted Monge-Ampère energy of quasiplurisubharmonic functions. J. Funct. Anal. 250 (2007)

  12. Hiep, P.H.: Hölder continuity of solutions to the Monge-Ampère equations on compact Kähler manifolds. Annales de l’Institut Fourier 60(5), 1857–1869 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hou, Z.: Complex Hessian equation on Kähler manifold. Int. Math. Res. Not. 2009(16), 3098–3111 (2009)

    Article  MATH  Google Scholar 

  14. Hou, Z., Ma, X. -N., Wu, D.: A second order estimate for complex Hessian equations on a compact Kähler manifold. Math. Res. Lett. 17(3), 547–561 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jbilou, A.: Complex Hessian equations on some compact Kähler manifolds. Int. J. Math. Math. Sci. 2012, Art. ID 350183, 48 pp. (2012)

  16. Kołodziej, S.: Complex Monge-Ampère equation. Acta Math. 180, 69–117 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kołodziej, S., Nguyen, N.C.: An inequality between complex Hessian measures of hölder continuous m-subharmonic functions and capacity. Geometric analysis—in honor of Gang Tian’s 60th birthday, 157–166, Progr. Math., 333, Springer Cham (2020)

  18. Littman, W.: Generalized subharmonic functions: monotonic approximations and an improved maximum principle. Ann. Scuola Norm. Sup. Pisa (3) 17, 207–222 (1963)

    MathSciNet  MATH  Google Scholar 

  19. Lu, C.H.: Solutions to degenerate complex Hessian equations. J. Math. Pures Appl. (9) 100(6), 785–805 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lu, C.H., Nguyen, V. -D.: Complex Hessian equations with prescribed singularity on compact Kähler manifolds. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 23(1), 425–462 (2022)

    MathSciNet  MATH  Google Scholar 

  21. Lu, C.H., Nguyen, V. -D.: Complex Hessian equations on compact Kähler manifolds. Indiana Univ. Math. J. 64(6), 1721–1745 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees very much for suggestions and valuable remarks which led to the improvement of the exposition of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manar Bouhssina.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amal, H., Asserda, S. & Bouhssina, M. Continuous Solutions for Degenerate Complex Hessian Equation. Acta Math Vietnam 48, 371–386 (2023). https://doi.org/10.1007/s40306-023-00498-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40306-023-00498-1

Keywords

Mathematics Subject Classification (2010)

Navigation