Skip to main content
Log in

Braid Group Action on Projective Quantum \(\mathfrak {sl}(2)\) Modules

  • Published:
Acta Mathematica Vietnamica Aims and scope Submit manuscript

Abstract

We define a family of braid group representations via the action of the R-matrix (of the quasitriangular extension) of the restricted quantum \(\mathfrak {sl}(2)\) on a tensor power of a simple projective module. This family is an extension of the Lawrence representation specialized at roots of unity. Although the center of the braid group has finite order on the specialized Lawrence representations, this action is faithful for our extension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Beliakova, A., Blanchet, C., Geer, N.: Logarithmic Hennings invariants for restricted quantum \(\mathfrak {sl}(2)\). Algebr. Geom. Topol. 18(7), 4329–4358 (2018)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  2. Blanchet, C., Costantino, F., Geer, N., Patureau-Mirand, B.: Non-semi-simple TQFTs, Reidemeister torsion and Kashaev’s invariants. Adv. Math. 301, 1–78 (2016)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  3. Bigelow, S.: Braid groups are linear. J. Am. Math. Soc. 14(2), 471–486 (2001)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  4. Birman, J.S.: Braids, links, and mapping class groups. Ann. Math. Stud., No. 82. Princeton University Press, University of Tokyo Press, Tokyo, pp ix+ 228 (1974)

  5. Birman, J.S., Ko, K.H., Lee, S.J.: A new approach to the word and conjugacy problems in the braid groups. Adv. Math. 139(2), 322–353 (1998)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  6. Birman, J.S., Wenzl, H.: Braids, link polynomials and a new algebra. Trans. Am. Math. Soc. 313(1), 249–273 (1989)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  7. BrouΓ©, M., Malle, G.: Zyklotomische Heckealgebren. AstΓ©risque, vol. 212. ReprΓ©sentations unipotentes gΓ©nΓ©riques et blocs des groupes rΓ©ductifs finis, pp. 119–189 (1993)

  8. Burau, W.: ÜBer Zopfgruppen und gleichsinnig verdrillte Verkettungen. Abh. Math. Sem. Univ. Hamburg 11(1), 179–186 (1935)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  9. Costantino, F., Geer, N., Patureau-Mirand, B.: Quantum invariants of 3-manifolds via link surgery presentations and non-semi-simple categories. J. Topol. 7(4), 1005–1053 (2014)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  10. Costantino, F., Geer, N., Patureau-Mirand, B.: Some remarks on the unrolled quantum group of \(\mathfrak {sl(2)}\). Pure Appl. Algebra 219(8), 3238–3262 (2015). (See also the revised version at arXiv:1406.0410v3 [math.GT] for corrected formulas)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  11. Feigin, B.L., Gainutdinov, A.M., Semikhatov, A.M., Tipunin, I.Yu.: Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center. Comm. Math. Phys. 265(1), 47–93 (2006)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  12. Garside, F.A.: The braid group and other groups. Quart. J. Math. Oxford Ser. 20(2), 235–254 (1969)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  13. Ito, T.: Topological formula of the loop expansion of the colored Jones polynomials. arXiv:1411.5418 [math.GT] (2014)

  14. Ito, T.: Reading the dual Garside length of braids from homological and quantum representations. Comm. Math. Phys. 335(1), 345–367 (2015)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  15. Ito, T.: A homological representation formula of colored Alexander invariants. Adv. Math. 289, 142–160 (2016)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  16. Jackson, C., Kerler, T.: The Lawrence-Krammer-Bigelow representations of the braid groups via \(U_{q}(\mathfrak {sl}_{2})\). Adv. Math. 228(3), 1689–1717 (2011)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  17. Karvounis, K.: Braid Group Action on Projective Modules of Quantum \(\mathfrak {sl}(2)\). PhD Thesis, UniversitΓ€t ZΓΌrich (2019)

  18. Karvounis, K.: Mathematica Programs. https://github.com/karvounisk/BraidReps

  19. Kassel, C., Turaev, V.: Braid Groups, vol. 247. Graduate Texts in Mathematics. With the graphical assistance of Olivier Dodane. Springer, New York, pp xii+ 340 (2008)

  20. Kondo, H., Saito, Y.: Indecomposable decomposition of tensor products of modules over the restricted quantum universal enveloping algebra associated to \(\mathfrak {sl}_{2}\). J. Algebra 330, 103–129 (2001)

    ArticleΒ  Google ScholarΒ 

  21. Kohno, T.: Quantum and homological representations of braid groups. Configuration Spaces, vol. 14. CRM Series. Ed. Norm., pp 355–372 Pisa (2012)

  22. Krammer, D.: The braid group B4 is linear. Invent. Math. 142(3), 451–486 (2000)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  23. Krammer, D.: Braid groups are linear. Ann. of Math. (2) 155(1), 131–156 (2002)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  24. Lawrence, R.J.: Homological representations of the Hecke algebra. Comm. Math. Phys. 135(1), 141–191 (1990)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  25. Marin, I.: ReprΓ©sentations LinΓ©aires des Tresses InfinitΓ©simales. PhD Thesis UniversitΓ© Paris 11 - Orsay (2001)

  26. Marin, I.: The cubic Hecke algebra on at most 5 strands. J. Pure Appl. Algebra 216(12), 2754–2782 (2012)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  27. Marin, I., Wagner, E.: A cubic defining algebra for the Links-Gould polynomial. Adv. Math. 248, 1332–1365 (2013)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  28. Marin, I., Wagner, E.: Markov traces on the Birman-Wenzl-Murakami algebras. arXiv:1403.4021 [math.GT] (2014)

  29. Murakami, J.: The Kauffman polynomial of links and representation theory. Osaka J. Math. 24(4), 745–758 (1987)

    MathSciNetΒ  MATHΒ  Google ScholarΒ 

  30. Ohtsuki, T.: Quantum Invariants, vol. 29. Series on Knots and Everything. World Scientific Publishing Co., Inc., River Edge, NJ, pp xiv+ 489 (2002)

  31. Stanley, R.P.: Enumerative combinatorics. Volume 1. vol. 49. Cambridge Studies in Advanced Mathematics. 2nd edn. Cambridge University Press, Cambridge, pp xiv+ 489 (2012)

  32. Xiao, J.: Generic modules over the quantum group \(U_{t}(\mathfrak {sl}_2)\) at t a root of unity. Manuscripta Math. 83(1), 75–98 (1994)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  33. Xiao, J.: Finite-dimensional representations of \(U_{t}(\mathfrak {sl}_2)\) at roots of unity. Canad. J. Math. 49(4), 772–787 (1997)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  34. Zinno, M.G.: On Krammer’s representation of the braid group. Math. Ann. 321(1), 197–211 (2001)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

Download references

Acknowledgments

The author would like to thank Prof. A. Beliakova and Prof. C. Blanchet for the insightful discussions and for providing comments on the current manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Karvounis.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: A. Proofs of Various Statements

Appendix: A. Proofs of Various Statements

1.1 A.1 Action of R-Matrix on Weight Modules

We show that the action of the R-matrix (2.2) on any (weight) module V of D is given by (2.13)

$$ R = q^{H \otimes H/2} \sum\limits_{n=0}^{r-1} \frac{\{1\}^{2n}}{\{n\}!} q^{n(n-1)/2} \left( E^{n} \otimes F^{n} \right). $$

Due to (2.1) we have that Eik = qβˆ’ikEi and Fik = qikFi for any \(i \in \mathbb N\). Therefore (2.2) can be written as \(R = C \circ \widetilde {R}\), where

$$ C = \frac{1}{4r} \sum\limits_{m,m^{\prime}=0}^{4r-1} q^{- m m^{\prime} / 2} k^{m} \otimes k^{m^{\prime}} \quad\text{and}\quad \widetilde{R} = \sum\limits_{n=0}^{r-1} \frac{\{1\}^{2n}}{\{n\}!} q^{n(n-1)/2} \left( E^{n} \otimes F^{n} \right). $$

Therefore, it remains to prove that C = qHβŠ—H/2 (2.12) as operators acting on V βŠ—V. Let \(-2r \leq \lambda , \lambda ^{\prime } < 2r\) and let v and w be weight vectors of V, such that kv = qΞ»/2v and \(k w = q^{\lambda ^{\prime }/2} w\). We have that

$$ \begin{array}{@{}rcl@{}} 4r C(v \otimes w) = \sum\limits_{m,m^{\prime}=0}^{4r-1} q^{- m m^{\prime} / 2} k^{m} v \otimes k^{m^{\prime}} w &=& \sum\limits_{m,m^{\prime}=0}^{4r-1} q^{(- m m^{\prime} + m \lambda + m^{\prime} \lambda^{\prime}) /2} v \otimes w \\ &=& \sum\limits_{m=0}^{4r-1} q^{m \lambda /2} \sum\limits_{m^{\prime}=0}^{4r-1} q^{\frac{\lambda^{\prime}-m}{2}m^{\prime}} v \otimes w. \end{array} $$

Note that \(q^{\frac {\lambda ^{\prime }-m}{2}}=1\) if and only if \(\lambda ^{\prime }-m = 0 \mod 4r\), since q is a primitive 2r th root of unity. Since 0 ≀m ≀ 4r βˆ’β€‰1 this happens only for one such m. Denote this value of m by \(m_{0} = 4 \mu r + \lambda ^{\prime }\) for some \(\mu \in \mathbb Z\). Then at the second summation (over \(m^{\prime }\)) for all \(m^{\prime } \neq m_{0}\) the corresponding summand equals 0, since it is multiple of the sum of all \(4r/\gcd (4r,\lambda ^{\prime }-m)\)-roots of unity. Therefore

$$ \begin{array}{@{}rcl@{}} \sum\limits_{m,m^{\prime}=0}^{4r-1} q^{- m m^{\prime} / 2} k^{m} v \otimes k^{m^{\prime}} w &=& 4r q^{m_{0} \lambda/2} q^{(\lambda^{\prime} - m_{0}) /2} v \otimes w \\ &=& 4r q^{\lambda \lambda^{\prime} /2} v \otimes w = 4r q^{H \otimes H/2} (v \otimes w), \end{array} $$

that is, C = qHβŠ—H/2 on V βŠ—V.

1.2 A.2 R-Matrix on \(\mathsf {V}_{r-1}^{\otimes 2}\)

Applying the R-matrix (2.13) composed with the permutation operator Ο„ on a vector ui βŠ—uj of \(\mathsf {V}_{r-1}^{\otimes 2}\) we get

$$ \begin{array}{@{}rcl@{}} (\tau \circ R)(u_{i} \otimes u_{j}) = q^{H \otimes H /2}{\sum}_{n=0}^{r-1} \frac{\{1\}^{2n}}{\{n\}!} q^{n(n-1)/2} F^{n} u_{j} \otimes E^{n} u_{i}. \end{array} $$

Note that Enui≠ 0 if n < i + 1 and Fnuj≠ 0 if n < r βˆ’j. Hence, the summation is up to \({\min \limits } (i,r-j-1)\) and all other terms are zero. Substituting the action of E and F we get

$$ \begin{aligned} (\tau \circ R)(u_{i} \otimes u_{j}) =& \sum\limits_{n=0}^{\min (i,r-j-1)} \left( {\vphantom{\prod\limits_{m=0}^{n-1}}}\frac{\{1\}^{2n}}{\{n\}!} q^{\frac{n(n-1)}{2}} \right.\\ &\left.\cdot \prod\limits_{m=0}^{n-1} [m+j+1] []r - 1 -(m+j)] q^{H \otimes H/2} (u_{j+n} \otimes u_{i-n}) \right). \end{aligned} $$
(A.1)

It holds that

$$ \frac{\{1\}^{n}}{\{n\}!} \prod\limits_{m=0}^{n-1} [m+j+1] = ([n]!)^{-1} \prod\limits_{m=1}^{n} [m+j] = \frac{[n+j]!}{[j]! [n]!} = \begin{bmatrix}{n+j}\\ {j}\end{bmatrix}. $$
(A.2)

Using the equality {1}β‹… [r βˆ’β€‰1 βˆ’ (m + j)] = βˆ’{βˆ’β€‰1 βˆ’ (m + j)} = {m + j + 1} and substituting (A.2) into (A.1) we get

$$ (\tau \circ R)(u_{i} \otimes u_{j}) = {\sum}_{n=0}^{\min (i,r-j-1)} q^{n(n-1)/2} \begin{bmatrix}{n+j} \\ {j}\end{bmatrix} {\prod}_{m=0}^{n-1} \{m+j+1\} q^{H \otimes H /2} (u_{j+n} \otimes u_{i-n}). $$
(A.3)

We set s := qrβˆ’β€‰1 = βˆ’qβˆ’β€‰1 (2.5). The action of qHβŠ—H/2 on uj+n βŠ—uiβˆ’n is as follows

$$ \begin{array}{@{}rcl@{}} q^{H \otimes H /2} (u_{j+n} \otimes u_{i-n}) &=& q^{\frac{(r - 1 -2(i-n))(r - 1 -2(j+n))}{2}} u_{j+n} \otimes u_{i-n} \\ &=& q^{\frac{(r - 1)^{2}}{2}} q^{-(r - 1) (i+j)} q^{2(i-n)(j+n)} u_{j+n} \otimes u_{i-n} \\ &=& q^{\frac{(r - 1)^{2}}{2}} s^{-(i+j)} q^{2(i-n)(j+n)} u_{j+n} \otimes u_{i-n}. \end{array} $$

The factor \(q^{\frac {(r - 1)^{2}}{2}}\) is annihilated by the action of the operator R defined as in (3.1). Hence, using also (A.3), the action of R on the vector ui βŠ—uj of \(\mathsf {V}_{r-1}^{\otimes 2}\) is

$$ \begin{array}{@{}rcl@{}} \mathsf{R}(u_{i} \otimes u_{j}) = s^{-(i+j)} \sum\limits_{n=0}^{\min (i,r-j-1)} q^{2(i-n)(j+n)} q^{n(n-1)/2} \begin{bmatrix} {n+j} \\ {j} \end{bmatrix} \prod\limits_{m=0}^{n-1} \{m+j+1\} u_{j+n} \otimes u_{i-n}. \end{array} $$

1.3 A.3 Proof of Lemma 3.8

Let aΞ΅ ∈An,β„“ as in (3.6) and b ∈Bn,β„“. By the definition of the map Ξ¦ (3.9) we have that (Ξ¦βˆ’β€‰1)(b) = 0. Moreover, for m = 1 it holds bΞ΅,1 = 1 and hence, by (3.6) we get (Ξ¦βˆ’β€‰1)(aΞ΅) ∈Bn,β„“. Therefore (Ξ¦βˆ’β€‰1)2(aΞ΅) = 0.

1.4 A.4 Proof of Lemma 3.9

Let 1 ≀ℓ < r. We first show that \(E \circ \varPhi \vert _{\boldsymbol {A}_{n,\ell }} = 0\). We have that

$$ \begin{array}{@{}rcl@{}} E \circ \varPhi(a_{\boldsymbol{\varepsilon}}) &=& E \left( \sum\limits_{m=0}^{\ell} b_{\boldsymbol{\varepsilon},m} u_{0}^{\otimes j - 2} \otimes u_{m} \otimes E^{m-1} u_{\boldsymbol{\varepsilon}} \right) \\ &=& \sum\limits_{m=0}^{\ell} b_{\boldsymbol{\varepsilon},m} u_{0}^{\otimes j - 2} \otimes u_{m} \otimes E^{m} u_{\boldsymbol{\varepsilon}} + \sum\limits_{m=0}^{\ell} b_{\boldsymbol{\varepsilon},m} u_{0}^{\otimes j - 2} \otimes u_{m-1} \otimes K E^{m-1} u_{\boldsymbol{\varepsilon}}. \end{array} $$

Note that uΞ΅ ∈Vnβˆ’jβˆ’β€‰1,β„“βˆ’β€‰1 by (3.6), therefore Eβ„“uΞ΅ = 0 and the summand for m = β„“ at the first sum is zero. Further, at the second sum for m = 0 we have that umβˆ’β€‰1 = 0. Finally, KEmβˆ’β€‰1uΞ΅ = snβˆ’j+ 1qβˆ’β€‰2(β„“βˆ’m)Emβˆ’β€‰1uΞ΅ since \(E^{m-1} u_{\boldsymbol {\varepsilon }} \in \boldsymbol {V}_{n-j-1, \ell - m}\). Putting it all together, we have

$$ \begin{array}{@{}rcl@{}} E \circ \varPhi(a_{\boldsymbol{\varepsilon}}) &=& \sum\limits_{m=0}^{\ell-1} b_{\boldsymbol{\varepsilon},m} u_{0}^{\otimes j - 2} \otimes u_{m} \otimes E^{m} u_{\boldsymbol{\varepsilon}} \\ & +& \sum\limits_{m=1}^{\ell} s^{n-j+1} q^{-2(\ell-m-1)} b_{\boldsymbol{\varepsilon},m} u_{0}^{\otimes j - 2} \otimes u_{m-1} \otimes E^{m-1} u_{\boldsymbol{\varepsilon}} \\ &=& \sum\limits_{m=1}^{\ell} (b_{\boldsymbol{\varepsilon},m} + s^{n-j+1} q^{-2(\ell-m-1)} b_{\boldsymbol{\varepsilon},m+1}) u_{0}^{\otimes j - 2} \otimes u_{m} \otimes E^{m} u_{\boldsymbol{\varepsilon}}. \end{array} $$

But bΞ΅,m + snβˆ’j+ 1qβˆ’β€‰2(β„“βˆ’mβˆ’β€‰1)bΞ΅,m+ 1 = 0 and therefore, E∘Φ = 0 on An,β„“. Now, by definition, Ξ¦ is the identity on Bn,β„“. Hence, \(E \circ \varPhi = 0 \oplus E \vert _{\boldsymbol {B}_{n,\ell }}\).

By Lemma 3.7 \(E \vert _{\boldsymbol {B}_{n, \ell }}\) is injective for all β„“ β‰₯ 1 and by Lemma 3.8 the map Ξ¦ is an automorphism of Vn,β„“. Therefore, \(\ker (E \circ \varPhi ) \cap \boldsymbol {V}_{n,\ell } = \ker E \cap \boldsymbol {V}_{n,\ell } = \boldsymbol {A}_{n,\ell }\). Hence, due to Lemma 3.8 we conclude that An,β„“β‰…Wn,β„“.

1.5 A.5 Proof of (4.1) and (4.2)

Let w be a weight vector of Pi of weight \(q^{(i + 2m^{\prime })/2}\), where \(m^{\prime } \in \{-r+1, \ldots , j+1\}\). Since \(E u_{0}^{\alpha } = F u_{0}^{\alpha } = 0\), by (2.13) we have that

$$ c_{\mathsf{V}^{\alpha}_{0}, \mathsf{P}_{i}} \left( u_{0}^{\alpha} \otimes w\right) = \tau \circ R \left( u_{0}^{\alpha} \otimes w\right) = \tau \left( q^{H \otimes H /2} u_{0}^{\alpha} \otimes w\right) = q^{\frac{mr (i + 2m^{\prime})}{2}} w \otimes u_{0}^{\alpha}. $$

Similarly, we get

$$ c_{\mathsf{P}_{i}, \mathsf{V}^{\alpha}_{0}} (w \otimes u_{0}^{\alpha}) = q^{\frac{mr (i + 2m^{\prime})}{2}} u_{0}^{\alpha} \otimes w. $$

After combining the two equations, we finally have

$$ c_{\mathsf{P}_{i}, \mathsf{V}^{\alpha}_{0}} \circ c_{\mathsf{V}^{\alpha}_{0}, \mathsf{P}_{i}} (u_{0}^{\alpha} \otimes w) = q^{mr(i+2m^{\prime})} u_{0}^{\alpha} \otimes w = q^{mri} u_{0}^{\alpha} \otimes w, $$

which proves (4.1).

For the calculations involving the twist operator, we use the ribbon element as given by [30] and [10], that is

$$ \theta = K^{r-1} \sum\limits_{n=0}^{r-1} \frac{\{1\}^{2n}}{\{n\}!} q^{n(n-1)/2} S(F^{n}) q^{-H^{2}/2} E^{n}, $$
(A.4)

where the operator \(q^{-H^{2}/2}\) is defined as \(q^{-H^{2}/2} v = q^{-\lambda ^{2} / 2} v\) for a weight vector v, where Ξ» is the strong weight of v (2.10). Since \(E u_{0}^{\alpha } = F u_{0}^{\alpha } = 0\), by (A.4) we have that

$$ \theta (u_{0}^{\alpha}) = K^{r-1} q^{-H^{2}/2} u_{0}^{\alpha} = q^{mr(r-1) - \frac{(mr)^{2}}{2}} u_{0}^{\alpha}. $$

Since the action of the twist operator \(\theta _{\mathsf {V}_{0}^{\alpha }}\) is defined by the action of πœƒβˆ’β€‰1, (4.2) is proved.

1.6 A.6 Proof of (4.3)

By the naturality of the twist, it holds that

$$ \theta_{\mathsf{P}^{\alpha}_{i}} = \theta_{\mathsf{V}^{\alpha}_{0} \otimes \mathsf{P}_{i}}= \left( \theta_{\mathsf{V}^{\alpha}_{0}} \otimes \theta_{\mathsf{P}_{i}} \right) c_{\mathsf{P}_{i}, \mathsf{V}^{\alpha}_{0}} \circ c_{\mathsf{V}^{\alpha}_{0}, \mathsf{P}_{i}}. $$

By (4.1) and (4.2) we get

$$ \theta_{\mathsf{V}^{\alpha}_{0} \otimes \mathsf{P}_{i}}= q^{\frac{(mr)^{2}}{2} + mr - m r^{2}} (-1)^{m i } \left( \text{Id}_{\mathsf{V}^{\alpha}_{0}} \otimes \theta_{\mathsf{P}_{i}} \right). $$

Therefore, by (2.14)

$$ \theta_{\mathsf{P}^{\alpha}_{i}} = q^{\frac{(mr)^{2}+i^{2}}{2} + mr - m r^{2} + i} (-1)^{(m+1)i} \left( \text{Id}_{\mathsf{V}^{\alpha}_{0}} \otimes I_{1,i} - (r - i - 1) \frac{\{1\}^{2}}{\{i+1\}} \text{Id}_{\mathsf{V}^{\alpha}_{0}} \otimes x_{1,i} \right). $$

Note that \(\text {Id}_{\mathsf {V}^{\alpha }_{0}} \otimes I_{1,i} = I_{\alpha ,i}\) and \(\text {Id}_{\mathsf {V}^{\alpha }_{0}} \otimes x_{1,i} = x_{\alpha ,i}\). Moreover, we have that

$$ q^{\frac{(mr)^{2}+i^{2}}{2}} = q^{\frac{(mr+i)^{2}}{2}} (-1)^{-mi} \quad\text{and}\quad q^{-mr^{2}} = (-1)^{-mr}. $$

Combining all the above together, we get (4.3).

1.7 A.7 Proof of (5.2)

First we prove by induction the following:

$$ F u_{0}^{\otimes m} = \sum\limits_{j=1}^{m} s^{-(j-1)} c_{j}. $$
(A.5)

For m = 1 we have that Fu0 = u1 = c1. Suppose the statement holds for n. Then for n + 1, we have that

$$ \begin{array}{@{}rcl@{}} F u_{0}^{\otimes m+1} &=& K^{-1} u_{0} \otimes F u_{0}^{\otimes m} + F u_{0} \otimes u_{0}^{\otimes m} = s^{-1} \sum\limits_{j=1}^{m} s^{-(j-1)} u_{0} \otimes c_{j} + u_{1} \otimes u_{0}^{\otimes m}\\ &=& \sum\limits_{j=1}^{m} s^{-j} c_{j+1} + (-1)^{k} c_{1} = \sum\limits_{j=1}^{m+1} s^{-(j-1)} c_{j}. \end{array} $$

Now by (A.5) we have that

$$ \begin{array}{@{}rcl@{}} F \left( u_{1} \otimes u_{0}^{\otimes m}\right) &=& K^{-1} u_{1} \otimes F u_{0}^{\otimes m} + F u_{1} \otimes u_{0}^{\otimes m} \\ &=& s^{-1} q^{2} \sum\limits_{j=1}^{m} s^{-(j-1)} u_{1} \otimes c_{j} + [2]^{2} u_{2} \otimes u_{0}^{\otimes m} = q^{2} \sum\limits_{j=1}^{m} s^{-j} a_{1,j+1} + [2]^{2} b_{1} . \end{array} $$

Note that [2]≠ 0, since 2 + β„“ < r. And finally, we have that

$$ \begin{array}{@{}rcl@{}} &&F c_{i} = F \left( u_{0}^{\otimes i-1} \otimes u_{1} \otimes u_{0}^{\otimes n-i}\right) = K^{-1} u_{0}^{\otimes i-1} \otimes F \left( u_{1} \otimes u_{0}^{\otimes n-i}\right) + F u_{0}^{\otimes i-1} \otimes u_{1} \otimes u_{0}^{\otimes n-i} \\ &&= s^{-(i-1)} \left[ q^{2} \sum\limits_{j=1}^{n-i} s^{-j} u_{0}^{\otimes i-1} \otimes a_{1,j+1} + [2]^{2} u_{0}^{\otimes i -1} \otimes b_{1} \right] + \sum\limits_{j=1}^{i-1} s^{-(j-1)} c_{j} \otimes u_{1} \otimes u_{0}^{\otimes n-i} \\ &&= s^{-(i-1)} q^{2} \sum\limits_{j=1}^{n-i} s^{-j} a_{i,i+j} + \sum\limits_{j=1}^{i-1} s^{-(j-1)} a_{j,i} + [2]^{2} s^{-(i-1)} b_{i}. \end{array} $$

1.8 A.8 Proof of Lemma 5.1

We prove the statement for the matrix corresponding to Οƒ1 ∈Bn. Then it follows immediately for the rest of the generators of Bn since the generators of Bn are all conjugate to each other. Since p(X) is the minimal polynomial of the representation Wn,2, we have that p(Οƒ1)wi,j = 0 for all 1 ≀i < j ≀n. It remains to prove the same for the additional basis vectors of Nn,2,0 and Nn,2,1. We also have that

$$ p(X) = X^{3} + \left( -1 + s^{-2} - s^{-4} q^{2}\right) X^{2} + \left( -s^{-2} + s^{-4} q^{2} - s^{-6} q^{2}\right) X + s^{-6} q^{2}. $$

We start with Nn,2,0. We denote t = sβˆ’β€‰3(1 βˆ’q2). By an induction on k it holds that

$$ {\sigma_{1}^{k}} b = b + t \sum\limits_{m=0}^{k-1} \left( s^{-4}q^{2}\right)^{m} w_{1,2}. $$

Therefore, the coefficient of b in p(Οƒ1)b is zero, since the sum of the coefficients of p(X) is zero. Moreover, the coefficient of w1,2 in p(Οƒ1)b equals

$$ \begin{array}{@{}rcl@{}} t\left( 1 + s^{-4}q^{2} + s^{-8}q^{4}\right) + t\left( -1 + s^{-2} - s^{-4} q^{2}\right) \left( 1 + s^{-4}q^{2}\right) + t\left( -s^{-2} + s^{-4} q^{2} - s^{-6} q^{4}\right) = 0. \end{array} $$

Hence, the matrix for Οƒ1 satisfies p(X) and p(X) is the minimal polynomial for the matrix (since it is the minimal polynomial for the matrices of Wn,2 when the eigenvalues are distinct, that is when r β‰₯ 5).

We proceed now with Nn,2,1. Since \(\sigma _{1} b^{\prime }_{j} = b_{j}^{\prime }\) for 3 ≀j < n, and since the coefficients of p(X) sum up to zero, we have that \(p(\sigma _{1})b_{j}^{\prime } = 0\) for 3 ≀j < n. For j = 1, 2 we solve the following equation:

$$ {\sigma_{1}^{3}} b^{\prime}_{j} + x {\sigma_{1}^{2}} b^{\prime}_{j} + y \sigma_{1} b^{\prime}_{j} + z b^{\prime}_{j} = 0. $$

Note that

$$ \begin{array}{@{}rcl@{}} {\sigma_{1}^{3}} b^{\prime}_{2} + x {\sigma_{1}^{2}} b^{\prime}_{2} + y \sigma_{1} b^{\prime}_{2} + z b^{\prime}_{2} = 0 &\Leftrightarrow& s^{-1} {\sigma_{1}^{2}} b^{\prime}_{1} + s^{-1} x \sigma_{1} b^{\prime}_{1} + s^{-1} y \sigma_{1} b^{\prime}_{1} + z b^{\prime}_{2} = 0 \\ &\Leftrightarrow& s^{-1} {\sigma_{1}^{3}} b^{\prime}_{1} + s^{-1} x {\sigma_{1}^{2}} b^{\prime}_{1} + s^{-1} y {\sigma_{1}^{2}} b^{\prime}_{1} + s^{-1} z b^{\prime}_{1} = 0 \\ &\Leftrightarrow& {\sigma_{1}^{3}} b^{\prime}_{1} + x {\sigma_{1}^{2}} b^{\prime}_{1} + y {\sigma_{1}^{2}} b^{\prime}_{1} + z b^{\prime}_{1} = 0. \end{array} $$

So, it suffices to solve the equation for either \(b^{\prime }_{1}\) or \(b^{\prime }_{2}\). Calculating \({\sigma _{1}^{k}} b^{\prime }_{2}\) for k = 1, 2, 3 we find that the equation is satisfied when x = βˆ’β€‰1 + sβˆ’β€‰2 βˆ’sβˆ’β€‰4q2, y = βˆ’sβˆ’β€‰2 + sβˆ’β€‰4q2 βˆ’sβˆ’β€‰6q2 and z = sβˆ’β€‰6q2. We provide a verification with a Mathematica program Nn2_min_poly.nb (available at [18]). So, \(p(\sigma _{1})b_{j}^{\prime } = 0\) for every 1 ≀j < n and similarly as before, p(X) is the minimal polynomial for the matrix corresponding to Οƒ1.

1.9 A.9 Proof of Proposition 6.1

Note that the action of Bn on the submodule spanned by the vectors wi,j is the same as the action of Bn on the vectors wi,j of Wn,2 as in (3.12), which is isomorphic to the LKB representation. Therefore, it remains to prove that the braid group relations are satisfied on the vector b. Let 1 ≀i,jβ‰ n βˆ’β€‰1 such that \(\lvert i -j \rvert > 1\). Then

$$ \begin{array}{@{}rcl@{}} \sigma_{j} \sigma_{i} b &=& t \sigma_{j} w_{i,i+1} + \sigma_{j} b = t \sigma_{j} w_{i,i+1} + t w_{j,j+1} + b \\ &=& t w_{i,i+1} + t \sigma_{i} w_{j,j+1} + b = t \sigma_{i} w_{j,j+1} + \sigma_{i} b = \sigma_{i} \sigma_{j} b, \end{array} $$

where at the third equality we have used the fact that \(\lvert i -j \rvert > 1\). Moreover, for 1 ≀i < n βˆ’β€‰2, by applying the formula for the action of Bn on b, we have that

$$ \begin{array}{@{}rcl@{}} \sigma_{i} \sigma_{i+1} \sigma_{i} b &=& t \left( \sigma_{i} \sigma_{i+1} w_{i,i+1} + \sigma_{i} w_{i+1,i+2} + w_{i,i+1} \right) + b, \\ \sigma_{i+1} \sigma_{i} \sigma_{i+1} b &=& t \left( \sigma_{i+1} \sigma_{i} w_{i+1,i+2} + \sigma_{i+1} w_{i,i+1} + w_{i+1,i+2} \right) + b. \end{array} $$

A simple calculation using the action of Bn on the vectors wi,j shows that the two expressions in parentheses are both equal to sβˆ’β€‰1wi,i+ 2 + wi,i+ 1 + sβˆ’β€‰2wi+ 1,i+ 2, which proves the existence of the Bn-representation \(\widetilde {\boldsymbol {N}}_{n,2,0}\) over \(\mathbb Z[q^{\pm }, s^{\pm }, t^{\pm }]\). Furthermore, the variable t does not appear in any negative powers since the action of the inverses of the braid group generators on the vector b is given by

$$ \sigma_{i}^{-1} = - s^{4} q^{-2} t w_{i,i+1} + b. $$

That is, the representation is actually defined over \(\mathbb Z[q^{\pm }, s^{\pm }, t]\), which concludes the proof of the statement.

1.10 A.10 Proof of Proposition 6.8

We prove first the statement for k = 1. We first prove that for every m ≀n

$$ (\sigma_{1} {\ldots} \sigma_{m-1})(\sigma_{1} {\ldots} \sigma_{m-2}) {\ldots} \sigma_{1} b = b + t \sum\limits_{1 \leq i, j \leq m} w_{i,j}. $$
(A.6)

For m = 2, we have that Οƒ1b = b + tw1,2. Suppose the statement holds for any number less than m ≀n. Then for m βˆ’β€‰1 it holds that

$$ (\sigma_{1} {\ldots} \sigma_{m-2}) {\ldots} \sigma_{1} b = b + t \sum\limits_{1 \leq i, j \leq m-1} w_{i,j}. $$

Now, for m we have that

$$ (\sigma_{1} {\ldots} \sigma_{m-1}) (\sigma_{1} {\ldots} \sigma_{m-2}) {\ldots} \sigma_{1} b = (\sigma_{1} {\ldots} \sigma_{m-1}) b + t \sum\limits_{1 \leq i, j \leq m-1} (\sigma_{1} {\ldots} \sigma_{m-1}) w_{i,j}. $$

Using (3.12) with s = q = 1 we get that

$$ \begin{array}{@{}rcl@{}} (\sigma_{1} {\ldots} \sigma_{m-1}) w_{i,j} &=& \sigma_{1} {\ldots} \sigma_{j} w_{i,j} = \sigma_{1} {\ldots} \sigma_{j-1} w_{i,j+1} = \sigma_{1} {\ldots} \sigma_{i} w_{i,j+1} \\ &=& \sigma_{1} {\ldots} \sigma_{i-1} w_{i+1,j+1} = w_{i+1,j+1}. \end{array} $$

Now, we prove that for every \(m^{\prime } <n\)

$$ \sigma_{1} {\ldots} \sigma_{m}^{\prime} b = b + t \sum\limits_{2 \leq j \leq m^{\prime}+1} w_{1,j}. $$

For \(m^{\prime }=2\) the statement is obvious. Supposing the statement for any number less than \(m^{\prime } < n\), we have that

$$ \begin{array}{@{}rcl@{}} \sigma_{1} {\ldots} \sigma_{m^{\prime}} b &=& \sigma_{1} {\ldots} \sigma_{m^{\prime}-1} b + t \sigma_{1} {\ldots} \sigma_{m^{\prime}} w_{m^{\prime},m^{\prime}+1} = b + t \sum\limits_{2 \leq j \leq m^{\prime}} w_{1,j} + t w_{1,m^{\prime}+1} \\ &=& b + t \sum\limits_{2 \leq j \leq m^{\prime}+1} w_{1,j}, \end{array} $$

where at the second equality we use the inductive statement and (3.12). Combining all the above, it holds that

$$ \begin{array}{@{}rcl@{}} (\sigma_{1} {\ldots} \sigma_{m-1}) (\sigma_{1} {\ldots} \sigma_{m-2}) {\ldots} \sigma_{1} b &=& b + t \sum\limits_{2 \leq j \leq m} w_{1,j} + t \sum\limits_{1 \leq i, j \leq m-1} w_{i+1,j+1} \\ &=& b + t \sum\limits_{2 \leq j \leq m} w_{1,j} + t \sum\limits_{2 \leq i, j \leq m} w_{i,j}, \end{array} $$

which proves (A.6). By substituting m = n in (A.6) we get (6.8) for k = 1.

We now use induction on k to prove (6.8) for any \(k \in \mathbb N_{\geq 1}\). Suppose that the statement holds for any number less than k. Then

$$ \begin{array}{@{}rcl@{}} {{\varDelta}_{n}^{k}} b = {\varDelta}_{n} {\varDelta}_{n}^{k-1} b = {\varDelta}_{n} b + (k-1) t {\varDelta}_{n} \sum\limits_{1 \leq i < j \leq n} w_{i,j}. \end{array} $$

As mentioned before, the matrices corresponding to the generators of Bn for the representation \(\overline {\boldsymbol {W}}_{n,2}\) are permutation matrices. Therefore, any braid in Bn acts trivially on \({\sum }_{1 \leq i, j \leq m} w_{i,j}\). Therefore

$$ {{\varDelta}_{n}^{k}} b = {\varDelta}_{n} b + (k-1) t \sum\limits_{1 \leq i < j \leq n} w_{i,j} = b + k t \sum\limits_{1 \leq i < j \leq n} w_{i,j}, $$

and the statement is proved for every \(k \in \mathbb N_{\geq 1}\). Now, it is easy to see that

$$ {\varDelta}_{n}^{-1} = b - kt \sum\limits_{1 \leq i, j \leq n} w_{i,j}. $$

By a similar inductive argument, we can prove the statement for every k < 0, which concludes the proof.

1.11 A.11 Proof of Proposition 6.2

It remains to show that the braid group relations are satisfied for the vectors \(b^{\prime }_{m}\), with 1 ≀m ≀n βˆ’β€‰1. We start with the commutation relations ΟƒiΟƒj = ΟƒjΟƒi for |i βˆ’j|> 1. Suppose first that i,jβ‰ n βˆ’β€‰1 and that mβˆ‰{i,i + 1,j,j + 1}. Then we have that \(\sigma _{i} \sigma _{j} b^{\prime }_{m} = b^{\prime }_{m} = \sigma _{j} \sigma _{m} b^{\prime }_{m}\). If m = i (or without loss of generality m = j) then

$$ \sigma_{i} \sigma_{j} b^{\prime}_{i} = t w_{i,i+1} + \left( 1-s^{-2}\right) b^{\prime}_{i} + s^{-1} b^{\prime}_{i+1} = \sigma_{j} \sigma_{i} b^{\prime}_{i}. $$

Similarly if m = i + 1 (or m = j + 1)

$$ \sigma_{i} \sigma_{j} b^{\prime}_{i+1} = s^{-1} b^{\prime}_{i} = \sigma_{j} \sigma_{i} b^{\prime}_{i+1}. $$

Now, suppose i or j is equal to n βˆ’β€‰1 (we choose without loss of generality i = n βˆ’β€‰1 and hence j < n βˆ’β€‰2) and 1 ≀m < n βˆ’β€‰1. If mβ‰ j,j + 1, we have that

$$ \sigma_{n-1} \sigma_{j} b^{\prime}_{m} = b^{\prime}_{m} - s^{n-k-1} b^{\prime}_{n-1} = \sigma_{j} \sigma_{n-1} b^{\prime}_{m}. $$

For m = j

$$ \sigma_{n-1} \sigma_{j} b^{\prime}_{j} = s^{j-n} t w_{j,j+1} + \left( 1-s^{-2}\right) b^{\prime}_{j} + s^{-1} b^{\prime}_{j+1} - s^{n-j-1} b^{\prime}_{n-1} = \sigma_{j} \sigma_{n-1} b^{\prime}_{j}. $$

For m = j + 1

$$ \sigma_{n-1} \sigma_{j} b^{\prime}_{j+1} = s^{-1} b^{\prime}_{j} - s^{-1} s^{n-j-1} b^{\prime}_{n-1} = \sigma_{j} \sigma_{n-1} b^{\prime}_{j+1}. $$

Finally, if m = n βˆ’β€‰1

$$ \sigma_{n-1} \sigma_{j} b^{\prime}_{n-1} = s^{-1} t w_{n-1,n} - s^{-2} b^{\prime}_{n-1} = \sigma_{j} \sigma_{n-1} b^{\prime}_{n-1}. $$

Now we proceed to the braiding relations ΟƒiΟƒi+ 1Οƒi = Οƒi+ 1ΟƒiΟƒi+ 1 for 1 ≀i < n βˆ’β€‰1. We start with the case 1 ≀i < n βˆ’β€‰2. If mβ‰ i,i + 1,i + 2 then the braiding relations are satisfied since \(\sigma _{i} b^{\prime }_{m} = b^{\prime }_{m} = \sigma _{i+1} b^{\prime }_{k}\). For k = i we have that

$$ \begin{array}{@{}rcl@{}} \sigma_{i} \sigma_{i+1} \sigma_{i} b^{\prime}_{i} =& s^{i-n} t \overbrace{\left( \sigma_{i} \sigma_{i+1} w_{i,i+1} + \sigma_{i} w_{i+1, i+2} + (1 - s^{-2}) w_{i,i+1} \right)}^{A_{1} :=} \\ &+ (1- s^{-2}) b^{\prime}_{i} + s^{-1} (1- s^{-2}) b^{\prime}_{i+1} + s^{-2} b^{\prime}_{i+2}. \end{array} $$

On the other hand

$$ \begin{array}{@{}rcl@{}} \sigma_{i+1} \sigma_{i} \sigma_{i+1} b^{\prime}_{i} &=& s^{i-n} t \overbrace{\left( \sigma_{i+1} w_{i,i+1} + w_{i+1, i+2} \right)}^{A_{2} :=}\\ &&\!\!+ \left( 1- s^{-2}\right) b^{\prime}_{i} + s^{-1} \left( 1- s^{-2}\right) b^{\prime}_{i+1} + s^{-2} b^{\prime}_{i+2}. \end{array} $$

Note that in both expressions we have the same terms involving the vectors \(b^{\prime }_{k}\) for k = 1,…,n. It remains to compare the expressions A1 and A2. In Appendix A.9 it was proved that

$$ \sigma_{i} \sigma_{i+1} w_{i,i+1} + \sigma_{i} w_{i+1,i+2} + w_{i,i+1} = \sigma_{i+1} \sigma_{i} w_{i+1,i+2} + \sigma_{i+1} w_{i,i+1} + w_{i+1,i+2}. $$
(A.7)

Therefore

$$ A_{1} - A_{2} = \sigma_{i+1} \sigma_{i} w_{i+1, i+2} - s^{-2} w_{i,i+1} = 0, $$

where the last equality is due to (3.12). Hence, \(\sigma _{i} \sigma _{i+1} \sigma _{i} b^{\prime }_{i} = \sigma _{i+1} \sigma _{i} \sigma _{i+1} b^{\prime }_{i}\). For m = i + 1, it holds that

$$ \sigma_{i} \sigma_{i+1} \sigma_{i} b^{\prime}_{i+1} = s^{i-n-1} t w_{i+1,i+2} + s^{-1} \left( 1-s^{-2}\right) b^{\prime}_{i} + s^{-2} b^{\prime}_{i+1} = \sigma_{i+1} \sigma_{i} \sigma_{i+1} b^{\prime}_{i+1}. $$

If m = i + 2, then

$$ \sigma_{i} \sigma_{i+1} \sigma_{i} b^{\prime}_{i+2} = s^{-2} b^{\prime}_{i} = \sigma_{i+1} \sigma_{i} \sigma_{i+1} b^{\prime}_{i+2}. $$

Now we examine the case i = n βˆ’β€‰2. If m < n βˆ’β€‰2, then we have that

$$ \begin{array}{@{}rcl@{}} \sigma_{n-2} \sigma_{n-1} \sigma_{n-2} b^{\prime}_{n-2} &=& s^{-2} t \overbrace{\left( \sigma_{n-2} \sigma_{n-1} w_{n-2,n-1} + \sigma_{n-2} w_{n-1, n} + \left( 1 - s^{-2}\right) w_{n-2,n-1} \right)}^{B_{1} :=} \\ &&\!\!- s^{-2} b^{\prime}_{n-2} + s^{-1} \left( 1- s^{-2}\right) b^{\prime}_{n-1}. \end{array} $$

On the other hand

$$ \sigma_{n-1} \sigma_{n-2} \sigma_{n-1} b^{\prime}_{n-2} = s^{-2} t \overbrace{\left( \sigma_{n-1} w_{n-2,n-1} + w_{n-1, n} \right)}^{B_{2} :=} - s^{-2} b^{\prime}_{n-2} + s^{-1} \left( 1- s^{-2}\right) b^{\prime}_{n-1}. $$

Again, due to (A.7) we have that B1 = B2 (the proof is analogous to the proof of A1 = A2). Hence, \(\sigma _{n-2} \sigma _{n-1} \sigma _{n-2} b^{\prime }_{n-2} = \sigma _{n-1} \sigma _{n-2} \sigma _{n-1} b^{\prime }_{n-2}\). And, finally, if m = n βˆ’β€‰1

$$ \sigma_{n-2} \sigma_{n-1} \sigma_{n-2} b^{\prime}_{n-1} = s^{-3} t w_{n-2,n-1} - s^{-3} b^{\prime}_{n-2} + s^{-2} b^{\prime}_{n-1} = \sigma_{n-1} \sigma_{n-2} \sigma_{n-1} b^{\prime}_{n-1}, $$

which completes the proof.

1.12 A.12 Proof of (7.2)

Using the fact that Ξ²i = 1 for n β‰‘βˆ’β€‰2 mod r (see SectionΒ 5.4) and (5.4), we have that

$$ F c_{i} = s^{-(i-1)} q^{2} \sum\limits_{j=1}^{n-i} s^{-j} w_{i,i+j} + \sum\limits_{j=1}^{i-1} s^{-(j-1)} w_{j,i} + s^{-(i-1)} \sum\limits_{j=1}^{n} b_{j}. $$

So

$$ \begin{array}{@{}rcl@{}} F \overline{c}_{i} &= & F c_{i} - s^{n-i} F c_{n} = s^{-(i-1)} q^{2} \sum\limits_{j=1}^{n-i} s^{-j} w_{i,i+j} + \sum\limits_{j=1}^{i-1} s^{-(j-1)} w_{j,i} + s^{-(i-1)} \sum\limits_{j=1}^{n} b_{j} \\ & &- s^{n-i} \sum\limits_{j=1}^{n-1} s^{-(j-1)} w_{j,n} - s^{i-1} \sum\limits_{j=1}^{n} b_{j} \\ &=& s^{-(i-1)} q^{2} \sum\limits_{j=1}^{n-i} s^{-j} w_{i,i+j} + \sum\limits_{j=1}^{i-1} s^{-(j-1)} w_{j,i} - s^{n-i} \sum\limits_{j=1}^{n-1} s^{-(j-1)} w_{j,n}. \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karvounis, K. Braid Group Action on Projective Quantum \(\mathfrak {sl}(2)\) Modules. Acta Math Vietnam 46, 399–440 (2021). https://doi.org/10.1007/s40306-020-00413-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40306-020-00413-y

Keywords

Mathematics Subject Classification (2010)

Navigation